Big Data and Distributed Data
Processing (Analytics)

Reynold Xin @mxin :
2017-12-05, CS145 Guest Lecture, Stanford databr].C].'(S

Who am I7?

Co-founder & Chief Architect @ Databricks

« Day job: direction for data processing (including Spark)
« Night job: code contributor to Apache Spark, #1 committer

On-leave from PhD @ Berkeley AMPLab

€databricks

Transaction Analytics

Processing
(OLTP) (OLAP)
“User A boughtitem b” “What is revenue each store

this year?”

€databricks

Agenda

Whatis “Big Data” (BD)?

Distributed data processing / MPP databases
GFS, MapReduce, Hadoop

Spark

What’s different between BD and DB?

€databricks

big data

Search term

+Add term

Interest over time - v/ News headlines Forecast 7

G
A
—_—————— e —— e ————
2005 2007 2009 2011 2013 2015
<hD

€databricks

big data small data

Search term Search term +Add term
Interest over time - [[] News headlines Forecast 7
Average 2005 2007 2009 2011 2013 2015

<D

€databricks

What is "Big

Data™?

Gartner's Definition

“Big data” is high-volume, -velocity and -variety information assets
that demand cost-effective, innovative forms of information
processing for enhanced insight and decision making.

€databricks

3 Vs of Big Data

Volume: data size
Velocity: rate of data coming in

Variety (most important V): data sources, formats, workloads

€databricks

‘Big Data” can also refer to the tech stack

Some concepts pioneered by Google

€databricks

Massively Parallel Processing
Databases (MPP)

Shared nothing architecture

Commodity servers connected via commodity networking
Example: Teradata, Redshift

Node 1 Node 2
Co-located compute

and storage

€databricks

*“ Source: DeWitt, Data Warehousing in the Cloud, The End of “Shared-Nothing”

How does query processing work’?

Embarrassingly parallel operators (each node doing their own work):
 Scan
« Filter

Aggregate?
Join?

€databricks

Final

Distributed Aggregation Aggr;gate
select count(*) from store_sales Exchange

where ss _item sk = 1000

T

Partial

Aggregate Aggregate
Filter Filter
Scan Scan

€databricks Plan Distributed Plan

Exchange Operator
“Shuffles” data to the right partition (node / thread), hash or range
Hash partitioning: partition_id(row) = hash(key(row)) % N

Separation of concerns in distributed query processing

« Other operators are no different from single-threaded implementations (e.g.
aggregate, scan, filter)

€databricks

Distributed Joins - Shutfle Joins

A.k.a. copartitioned join

Join
/\
Exchange Exchange
T T
ScanA Scan B

Data Flow

@databricks Plan Network traffic: size(A) + size(B)

Distributed Joins — Broadcast Joins

It size(A) <<size(B), e.g. Ais IMB, and B is 1TB, can we avoid shuffling
all the data?

Join
Broadcast
Exchange
Scan A ScanB

Data Flow

gdatabricks Plan Network traffic: size(A) * N

Shared storage architecture

Can scale compute / storage separately.
“Cloud” model. Examples: Hadoop, Spark.

Local disks for caching DB
pages, temp files, ...
= = =y| Network can limit scaling as it]

@ must carry 1/O traffic

;)
_MEm]

- - - - - - - - - - - @ - @ L

At

€databricks

Source: DeWitt, Data Warehousing in the Cloud, The End of “Shared-Nothing”

Why didn't Google just use
database systems”

Challenges Google faced

The
Economist || /i sowncsmitionvienss

The data deluge

AND HOW TO HANDLE IT: A 14-PAGE SPECIAL

Data size growing (volume & velocity)
- Processing has to scale out over large clusters

Complexity of analysis increasing (variety)
- Massive ETL (web crawling)
- Machine learning, graph processing

MACHINE LEARNING
€databricks

Examples
Google web index: 10+ PB

Types of data: HTML pages, PDFs, images, videos, ...

Costof 1 TB of disk: S50

Timetoread 1 TB from disk: 6 hours (50 MB/s)

€databricks

The Big Data Problem

Semi-/Un-structured data doesn’t fit well with databases
Single machine can no longer process or even store all the datal!

Only solution is to distribute general storage & processing over
clusters.

€databricks

€databricks

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
Google*

ABSTRACT

We have designed and implemented the Google File Sys-
tem, a scalable distributed file system for large distributed
data-intensive applications. It provides fault tolerance while
running on inexpensive commodity hardware, and it delivers
high aggregate performance to a large number of clients.

While sharing many of the same goals as previous dis-
tributed file systems, our design has been driven by obser-
vations of our application workloads and technological envi-
ronment, both current and anticipated, that reflect a marked
departure from some earlier file system assumptions. This
has led us to reexamine traditional choices and explore rad-
ically different design points.

The file system has successfully met our storage needs.
It is widely deployed within Google as the storage platform
for the generation and processing of data used by our ser-
vice as well as research and development efforts that require
large data sets. The largest cluster to date provides hun-
dreds of terabytes of storage across thousands of disks on
over a thousand machines, and it is concurrently accessed
by hundreds of clients.

In this paper, we present file system interface extensions
designed to support distributed applications, discuss many
aspects of our design, and report measurements from both
micro-benchmarks and real world use.

1. INTRODUCTION

We have designed and implemented the Google File Sys-
tem (GFS) to meet the rapidly growing demands of Google's
data processing needs. GFS shares many of the same goals
as previous distributed file systems such as performance,
scalability, reliability, and availability. However, its design
has been driven by key observations of our application work-
loads and technological environment, both current and an-
ticipated, that reflect a marked departure from some earlier
file system design assumptions. We have reexamined tradi-
tional choices and explored radically different points in the
design space.

First, component failures are the norm rather than the
exception. The file system consists of hundreds or even
thousands of storage machines built from inexpensive com-
modity parts and is accessed by a comparable number of
client machines. The quantity and quality of the compo-
nents virtually guarantee that some are not functional at
any given time and some will not recover from their cur-
rent failures. We have seen problems caused by application
bugs, operating system bugs, human errors, and the failures
of disks, memory, connectors, networking, and power sup-
plies. Therefore, constant monitoring, error detection, fault
tolerance, and automatic recovery must be integral to the
system.

Second, files are huge by traditional standards. Multi-GB

GES Assumptions
“Component failures are the norm rather than the exception”
“Files are huge by traditional standards”

“Most files are mutated by appending new data rather than
overwriting existing data”

- GFS paper
@databricks

File Splits

Example:

Large File
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001

6440MB

Let's color-code tHhem 1

Block Block Block Block
6 100 01

64MB 64MB 64MB 64MB 64MB 64MB 64MB 40MB

Files are composed of set of blocks

eg., Block Size = 64MB * Typically 64MBin size

* FEach block is stored as a separate file in the
€databricks local file system (e.g. NTFS)

Block Placement

Example:

=
] s

Node 1 Node 2 Node 3

e.g., Replication factor = 3
Default placement policy:
« First copy is written to the node

fau!
&same rack

€databricks

GES Architecture

BackupNode '

4

7 /
7 / \ N
, / \ N
DataNode DataNode DataNode DataNode DataNode
())))) A) ()
€databricks

Failures, Failures, Failures

GFS paper: “Component failures are the norm
rather than the exception.”

Failure types:
o Disk errors and failures

o DataNode failures
o Switch/Rack failures
o NameNode failures
o Datacenter failures

€databricks

GES Summary

Store large, immutable (append-only) files
Scalability

Reliability

Availability

€databricks

; o
[
7 ¥ | X, -‘.'\ \

»

le Datacenter

P

Traditional Network Programming
Message-passing between nodes (MPI, RPC, etc)

Really hard to do at scale:
- How to split problem across nodes?
- Important to consider network and data locality
- How to deal with failures?
- If a typical server fails every 3 years, a 10,000-node cluster sees 10 faults/day!
- Even without failures: stragglers (a node is slow)

Almost nobody does this!

€databricks

Data-Parallel Models

Restrict the programming interface so that the system can do more
automatically

“Here’s an operation, run it on all of the data”
- I don’t care where it runs (you schedule that)
- In fact, feel free to run it twice on different nodes
- Simlar to “declarative programming” in databases

€databricks

MapReduce Programming Model
Data type: key-value records

Map function:
(Kim vin) - “St(Kmter’ \/inter)
Reduce function:
(Kinters 1SE(Vineer)) == list(K, 46 Vit

outr Yout

€databricks

Hello World of Big Data: Word Count

Input

the quick
brown
fox

the fox
ate the
mouse

how now
brown
cow

€databricks

Map

Shuffle & Sort

the, 1
brown, 1
fox, 1

ate, 1
mouse, 1

Reduce

Output

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1
quick, 1

MapReduce Execution
Automatically split work into many small tasks
Send map tasks to nodes based on data locality
Load-balance dynamically as tasks finish

Shuffle (remember Exchange?) to handle cross-task communication

€databricks

MapReduce Fault Recovery

If a task fails, re-run it and re-fetch its input
« Requirement: inputis immutable

If a node fails, re-run its map tasks on others
« Requirement: task result is deterministic & side effect is idempotent

f ataskis slow, launch 2nd copy on other node
« Requirement: same as above

€databricks

MapReduce Summary

By providing a data-parallel model, MapReduce greatly simplified
cluster computing:

« Automatic division of job into tasks
« Locality-aware scheduling
 Load balancing

 Recovery from failures & stragglers

Also flexible enough to model a lot of workloads. ..

€databricks

Hadoop

Open-sourced by Yahoo!

« modeled after the two Google papers

Two components:
« Storage: Hadoop Distributed File System (HDFS)
« Compute: Hadoop MapReduce

Sometimes synonymous with Big Data

€databricks

MapReduce: A major step backwards

By David DeWitt on January 17, 2008 4:20 PM | Permalink | Comments (44) | TrackBacks (1)
[Note: Although the system attributes this post to a single author, it was written by David J. DeWitt and Michael Stonebraker]

On January 8, a Database Column reader asked for our views on new distributed database research efforts, and we'll begin here v
to discuss it, since the recent trade press has been filled with news of the revolution of so-called "cloud computing." This paradig:
processors working in parallel to solve a computing problem. In effect, this suggests constructing a data center by lining up a larg
much smaller number of high-end servers.

For example, IBM and Google have announced plans to make a 1,000 processor cluster available to a few select universities to te
software tool called MapReduce [1]. Berkeley has gone so far as to plan on teaching their freshman how to program using the M:

As both educators and researchers, we are amazed at the hype that the MapReduce proponents have spread about how it represer
data-intensive applications. MapReduce may be a good idea for writing certain types of general-purpose computations, but to the

1. A giant step backward in the programming paradigm for large-scale data intensive applications
2. A sub-optimal implementation, in that it uses brute force instead of indexing
3. Not novel at all -- it represents a specific implementation of well known techniques developed nearly 25 years ago

4. Missing most of the features that are routinely included in current DBMS

€databricks

Why didn't Google just use databases”

Cost
« database vendors charge by S/TB or §/core

Scale
« no database systems at the time had been demonstrated to work at that scale (# machines or data size)

Data Model

« Alot of semi-/un-structured data: web pages, images, videos

Programming Model

« SQL not expressive (or “simple”) enough for many Google tasks (e.g. crawl the web, build inverted index, log
analysis on unstructured data)

Not-invented-here

€databricks

MapReduce Programmability

Most real applications require multiple MR steps
« Google indexing pipeline: 21 steps
* Analytics queries (e.g. count clicks & top K): 2 - 5 steps
* Iterative algorithms (e.g. PageRank): 10’s of steps

Multi-step jobs create spaghetti code
« 21 MR steps -> 21 mapper and reducer classes
* Lots of boilerplate code per step

€databricks

Higher Level Frameworks

load 'foo';
group A all;
foreach B generate COUNT(CA);

N>
i1

€databricks

Problems with MapReduce

1. Programmability
« We covered this earlier ...

1. Performance
« Each MR job writes all output to disk
« Lack of more primitives such as data broadcast

€databricks

Spark

Started in Berkeley in 2010; donated to Apache Software Foundation in 2013

Programmability: DSL in Scala / Java / Python
« Functional transformations on collections
« 5-10X less code than MR
« Interactive use from Scala / Python REPL
 You can unit test Spark programs!

Performance:
« General DAG of tasks (i.e. multi-stage MR)
« Richer primitives: in-memory cache, torrent broadcast, etc
« Canrun 10 - 100X faster than MR

€databricks

Programmability

Full Google WordCount:

#include "mapreduce/mapreduce.h"

// User’s map function
class Splitwords: public Mapper {
pubTic:
virtual void Map(const MapInput& input)
{
const string& text = input.valueQ;
const int n = text.size(Q);
for (int i = 0; i <n;) {
// Skip past Teading whitespace
while (i < n && isspace(text[i]))
it++;
// Find word end
int start = 1i;
while (i < n && !isspace(text[i]))
i++;
if (start < 1)
Emit(text.substr(
start,i-start),"1");
}
}
b

REGISTER_MAPPER(Sp1itwords);

// User’s reduce function

€databricks

class sum: public Reducer {
pubTic:
virtual void Reduce(ReduceInput*® input)
{
// Iterate over all entries with the
// same key and add the values
int64 value = 0;
while (linput->done()) {
value += StringToInt(
input->value());
input->Nextvalue();
}
// Emit sum for input->key()
Emit(IntToString(value));
}
1

REGISTER_REDUCER(Sum) ;

int main(int argc, char** argv) {
ParseCcommandLineFlags(argc, argv);

MapReduceSpecification spec;

for (int i = 1; i < argc; i++) {
MapReduceInput®* in= spec.add_input();
in->set_format("text");
in->set_filepattern(argv[il);
in->set_mapper_class("splitwords");

3

// Specify the output files
MapReduceOutput* out = spec.output();
out->set_filebase("/gfs/test/freq");
out->set_num_tasks(100);
out->set_format("text");
out->set_reducer_class("sum");

// Do partial sums within map
out->set_combiner_class("sum");

// Tuning parameters
spec.set_machines(2000) ;
spec.set_map_megabytes(100);
spec.set_reduce_megabytes(100);

// Now run it

MapReduceResult result;

if (!MapReduce(spec, &result)) abort(Q);
return 0;

Programmability

Spark WordCount:

val file = spark.textFile(“hdfs://...”)

val counts = file.flatMap(line => line.split(®* ”))
.map(word => (word, 1))
.reduceByKey(_ + _)

counts.save(“out.txt”)

€databricks

Performance

K-Means Clustering m 15F W Hadoop

[[[[[[| MR
0 30 60 90 120 150 180

Logistic Regression m l]~0

0 25 50 75 100 125

Time per lteration (5s)

€databricks

Spark stack diagram

Streaming MLLib GraphX

Spark Core (RDD)

€databricks

Spark Summary

Spark generalizes MapReduce to provide:
* High performance
« Better programmability
* (consequently) a unified engine

The most active open source data project with over 1000 contributors

€databricks

How is Spark different fromm MPP databases?
Use cases: ETL, log analysis, advanced analytics (beyond SQL)
Interfaces: SQL and programmatic access (Scala, Java, Python)

Architecture: “shared nothing” vs “decoupled storage from compute”

€databricks

“Spark is the Taylor Swift
of big data software.”

- Derrick Harris, Fortune

Spark history

research Soark 10& librar Structured Streamin
paper park 1.0& libraries Code generation
RDD (SQL, ML, GraphX) \Vectorization
A A
2010 2013 2015
2012 l 2014 2016
v Databricks v
started started DataFrames
@ & donated Tunesten
Berkeley to ASF ML Pigelines
Dataset
R

€databricks

Scaling Spark users

Early adopters

@ hadEJEJID Data Scientists
Users Statisticians
> > R users
Understands

MapReduce Pybata
& functional APIs

€databricks

pdata.map(lambda x: (x.dept, [x.age, 11)) \
. reduceByKey(lambda x, y: [x[0] + y[0], x[1] + y[1]1]) \
.map(lambda x: [x[0], x[1][e] / x[1][1]]) \
.collect()

data.groupBy("dept").avg("age")

€databricks

DataFrames in Spark
Distributed data frame abstraction for Java, Python, R, Scala

Similar APIs as single-node tools (Pandas, dplyr), i.e. easy to learn

> head(filter(df, df$waiting < 50)) # an example in R
eruptions waiting

H#1 1.750 47
H#2 1.750 47
H##3 1.867 48

€databricks

Spark SQL

Logical

Optimizer Physical Code RDD
S
Slan I Plan | Generator
Data | []
Source < catalog Cromrs T i
APl elasticsearch pL ;

€databricks

DatakFrame API

DataFrames hold rows with a known schema and offer relational
operations on them through a DSL

val users = spark.sql(“select * from users”)

val massUsers = users(users(“country”) === “ES”)

J

¥
massusers.count() Expression AST

massusers.groupBy(“name”).avg(“age”)

€databricks

Spark RDD Execution

Java/Scala
frontend

\ 4

JVM
backend

€databricks

opaque closures
(user-defined functions)

Python
frontend

\ 4

Python
backend

Spark DataFrame Execution

DataFrame
frontena

Logical Plan Intermediate representation for computation

Catalyst
optimizer

Physical
execution

€databricks

Spark DataFrame Execution

e Jave/scala sQL Simple wrappers to create logical plan

N/

Logical Plan Intermediate representation for computation

Catalyst
optimizer

Physical
execution

€databricks

Can we improve Spark
performance by an
order of magnitude?

databricks

Performance
How do we get fast distributed query processing?

Fast single-node query processing + fast exchange + good query plans
(query optimizations)

€databricks

Going back to the fundamentals

Difficult to get order of magnitude performance speed ups with
profiling techniques

 For 10x improvement, would need of find top hotspots that add up to 90% and
make them instantaneous

e For 100x, 99%

Instead, look bottom up, how fast should it run?

€databricks

select count(*) from store_sales
where ss _item sk = 1000

€databricks

Aggregate
Project

Filter

Scan

Volcano Iterator Model

class Filter {
def next(): Boolean = {

Standard for 30 years: almost var found = false
I d b doi while (!found && child.next()) {

d atabases do It found = predicate(child.fetch())
}
return found

Each operatoris an “iterator” }

that consumes records fromits def fetch(): InternalRow = {

. child.fetch

input operator y o O

€databricks

What if we hire a college freshman to
implement this query in Java in 10 mins?

select count(*) from store_sales
where ss _item sk = 1000

var count = 0
for (ss_item sk in store_sales) {
if (ss_item sk == 1000) {
count += 1
}
}

€databricks

Volcano model s college freshman
30+ years of database research hand-written code in 10 mins

€databricks

Volcano - 13.95 million
rows/sec

s B
freshman rows/sec

N
7

High throughput

‘databl’iCkS“ Note: End-to-end, single thread, single column, and data originated in Parquet on disk

How does a student beat 30 years of research?

Volcano hand-written code
1. Manyvirtual function calls 1. Novirtual function calls
2. Datain memory (or cache) 2. Datain CPU registers

3. Noloop unrolling, SIMD, pipelining 3. Compiler loop unrolling, SIMD,
pipelining

Take advantage of all the information that is known after query compilation

@databricks

Whole-stage Codegen

Fusing operators together so the generated code looks like hand
optimized code:

- Identity chains of operators (“stages”)
- Compile each stage into a single function

- Functionality of a general purpose execution engine; performance
as if hand built system just to run your query

€databricks

* Source: Neumann. Efficiently Compiling Efficient Query Plans for Modern Hardware.

Whole-stage Codegen: Planner

€databricks

Whole-stage Codegen: Spark as a Compiler

! long count = ©;

for (ss_item sk in store_sales) {
if (ss_item sk == 1000) {
ﬁ count += 1;
}
}

Project

—
i

€databricks

The new APIs made this possible
DataFrame specifies high-level “intent”, similar to SQL

Spark understands the intent, and then optimizes the execution

API principle: Sufficiently abstracted to allow automatic optimization

€databricks

Two interesting directions for Spark

Multi-core scalability
« Machine with 128 cores start to look remarkably similar to distributed systems
« Spark runs reasonably well on a single laptop

Continuous (streaming) applications
« Very often a production data pipeline runs continuously against infinite data

€databricks

Return of SOL

Apple Cloud Data Media Mobile Science & Energy Social & Web Podcasts

ience from over 20|

MUST READS

Apple’s take on the smartwatch: All you need to know about HBO's E2 snapchat CEO meets with Saudi
Elegant evolution new HBO Now streaming service investor Prince Alwaleed bin Talal

SQVL is what’'s next for Hadoop: Here’s who’s doing it

by Feb. 21, 2013 - 10:29 AM PDT

JEB comments

Source: Shutterstock user hauhu.

When we first began putting together the schedule for

Structure: Data several months ago, we knew that running SQL queries on

Hadoop would be a big deal — we just didn’t know how big a deal it would
actually become. Fast-forward to today, a mere month away from the event
(March 20-21 in New York), and the writing on the wall is a lot clearer. SQL

€databricks

€databricks

Dremel: Interactive Analysis of Web-Scale Datasets

ABSTR.

Dremel is ¢
sis of read-
trees and c
tion queries
to thousand
of users at
and implen
MapReduce
age represe
few-thousar

1. INT

Large-scale
web compz
storage tha
data. Puttir
has grown
ten make ¢
ing, online «

Tenzing

A SQL Implementation On The MapReduce Framework

Bisway
Chattopz
biswape

Prathy:
Arago
prathyus

ABSTRACT

Tenzing is a query engi
for ad hoc analysis of
mostly complete SQL ir
sions) combined with sey
erogeneity, high perforn
data awareness, low lat«
and structured data, an
rently used internally a
serves 10000+ queries
pressed data. In this p
and implementation of]
typical analytical querie

1. INTRODUCTI]
The MapReduce [9)] frz

both inside and outside
has quickly become the f

manlahla Aindwihaadbad dad.

Processing a Trillion Cells per Mouse Click

Alexander Hall, Olaf Bachmann, Robert Blissow, Silviu Ganceanu, Marc Nunkesser
Google, Inc.

{alexhall, olafb, buessow, silviu, marcnunkesser;@google.com

ABSTRACT

Column-oriented database systems have been a real game
changer for the industry in recent years. Highly tuned and
performant systems have evolved that provide users with the
possibility of answering ad hoc queries over large datasets
in an interactive manner.

In this paper we present the column-oriented datastore
developed as one of the central components of PowerDrill'.
It combines the advantages of columnar data layout with
other known techniques (such as using composite range par-
titions) and extensive algorithmic engineering on key data
structures. The main goal of the latter being to reduce the
main memory footprint and to increase the efficiency in pro-
cessing typical user queries. In this combination we achieve
large speed-ups. These enable a highly interactive Web UI
where it is common that a single mouse click leads to pro-
cessing a trillion values in the underlying dataset.

1. INTRODUCTION

In the last decade, large companies have been placing an
ever increasing importance on mining their in-house data-
bases; often recognizing them as one of their core assets.
With this and with dataset sizes erowing at an enormous

relevant columns. Obviously, in denormalized datasets with
often several thousands of columns this can make a huge dif-
ference compared to the the row-wise storage used by most
database systems. Moreover, columnar formats compress
very well, thus leading to less I/O and main memory usage.

At Google multiple frameworks have been developed to
support data analysis at a very large scale. Best known and
most widely used are MapReduce [13] and Dremel [23]. Both
are highly distributed systems processing requests on thou-
sands of machines. The latter is a column-store providing
interactive query speeds for ad hoc SQL-like queries.

In this paper we present an alternative column-store de-
veloped at Google as part of the PowerDrill project. For
typical user queries originating from an interactive Web UI
(developed as part of the same project) it gives a perfor-
mance boost of 10-100x compared to traditional column-
stores which do full scans of the data.

Background

Before diving into the subject matter, we give a little back-
ground about the PowerDrill system and how it is used for
data analysis at Google. Its most visible part is an interac-
tive Web UI making heavy use of AJAX with the help of the
Google Web Toolkit [16]. It enables data visualization and

Why SQL?
Almost everybody knows SQL
Easier to write than MR (even Spark) for analytic queries

Lingua franca for data analysis tools (business intelligence, etc)

Schema is useful (key-value is limited)

€databricks

What's really different?

SQL on BD (Hadoop/Spark) vs SQL in DB?
Two perspectives:

1. Flexibility in data and compute model

2. Fault-tolerance

€databricks

Traditional Database Systems (Monolithic)

Applications

SQL

Physical Execution Engine (Dataflow)

Storage Manager

One way (SQL) in/out and data must be structured

€databricks

Big Data Systems (Layered)

Applications

Data-Parallel Engine (Spark, MR)

General Storage (HDFS, S3, etc)

Decoupled storage, low vs high level compute
Structured, semi-structured, unstructured data

Schema on read, schema on write
gdatabricks

Evolution of Database Systems
Decouple Storage from Compute

Traditional 2014 -2017
Applications Applications
SQL SQL
Physical Execution Engine (Dataflow) Physical Execution Engine (Dataflow)
IBM Big Insight
Oracle

EMC Greenplum

@databricks support for nested data (e.g. JSON)

Perspective 2: Fault Tolerance

Database systems: coarse-grained fault tolerance
« If fault happens, fail the query (or rerun from the beginning)

MapReduce: fine-grained fault tolerance
* Rerun failed tasks, not the entire query

€databricks

Google Official Blog

Insights from Googlers into our products, technology, and the Google culture

Sorting 1PB with MapReduce

Posted: Friday, November 21, 2008 g+ 53 W Tweet 38 %X‘

At Google we are fanatical about organizing the world's information. As a result, we spend a lot of time finding
better ways to sort information using MapReduce, a key component of our software infrastructure that allows us to
run multiple processes simultaneously. MapReduce is a perfect solution for many of the computations we run

% We were writing it to 48,000 hard drives (we did not use the
full capacity of these disks, though), and every time we ran

In ou

expe OUT soOrt, at least one of our disks managed to break (this is

Zf('gl not surprising at all given the duration of the test, the number)
. gene Of disks involved, and the expected lifetime of hard disks).
gdatabrick: informauon.

MapReduce
Checkpointing-based Fault Tolerance

Checkpoint all intermediate output
* Replicate them to multiple nodes
« Upon failure, recover from checkpoints
* High cost of fault-tolerance (disk and network 1/0)

Necessary for PBs of data on thousands of machines

What if I have 20 nodes and my query takes only 1 min?

€databricks

Spark
Unified Checkpointing and Rerun

Simple idea: remember the lineage to create an RDD, and recompute
from last checkpoint.

When fault happens, query still continues.

When faults are rare, no need to checkpoint, i.e. cost of fault-tolerance
is low.

€databricks

What's Really Different?

Monolithic vs layered storage & compute
« DB becoming more layered
« Although “Big Data” still far more flexible than DB

Fault-tolerance
« DB mostly coarse-grained fault-tolerance, assuming faults are rare

« Big Data mostly fine-grained fault-tolerance, with new strategies in Spark to
mitigate faults at low cost

€databricks

Convergence

DB evolving towards BD
« Decouple storage from compute
« Provide alternative programming models
« Semi-structured data (JSON, XML, etc)

BD evolving towards DB
« Schema beyond key-value
« Separation of logical vs physical plan
» Query optimization
« More optimized storage formats

€databricks

What did we talk about today”?

Whatis “Big Data” (BD)?

Distributed data processing / MPP databases
GFS, MapReduce, Hadoop

Spark

What’s different between BD and DB?

€databricks

Thanks! Questions?

(And yes we are hiring)

rxin@databricks.com databricks

Acknowledgement

Some materials taken from:

Zaharia. Processing Big Data with Small Programs
Franklin. SOL, NoSQL, NewSQL? CS186 2013

DeWitt. Data Warehousing in the Cloud, The End of Shared Nothing

€databricks

