# Big Data and Distributed Data Processing (Analytics)

Reynold Xin @rxin 2017-12-05, CS145 Guest Lecture, Stanford



#### Who am I?

Co-founder & Chief Architect @ Databricks

- Day job: direction for data processing (including Spark)
- Night job: code contributor to Apache Spark, #1 committer

On-leave from PhD @ Berkeley AMPLab



#### Transaction Processing

#### Analytics

(OLTP)

"User A bought item b"

#### (OLAP)

"What is revenue each store this year?"





What is "Big Data" (BD)?

Distributed data processing / MPP databases

GFS, MapReduce, Hadoop

Spark

What's different between BD and DB?











# What is "Big Data"?

#### Gartner's Definition

"Big data" is high-volume, -velocity and -variety information assets that demand cost-effective, innovative forms of information processing for enhanced insight and decision making.



#### 3 Vs of Big Data

Volume: data size

Velocity: rate of data coming in

Variety (most important V): data sources, formats, workloads



## "Big Data" can also refer to the tech stack



Some concepts pioneered by Google



# Massively Parallel Processing Databases (MPP)

## Shared nothing architecture

Commodity servers connected via commodity networking Example: Teradata, Redshift





## How does query processing work?

Embarrassingly parallel operators (each node doing their own work):

- Scan
- Filter

Aggregate?

Join?



## Distributed Aggregation

select count(\*) from store\_sales
where ss\_item\_sk = 1000





Plan

Distributed Plan

#### Exchange Operator

"Shuffles" data to the right partition (node / thread), hash or range

Hash partitioning: partition\_id(row) = hash(key(row)) % N

Separation of concerns in distributed query processing

• Other operators are no different from single-threaded implementations (e.g. aggregate, scan, filter)



#### Distributed Joins - Shuffle Joins

A.k.a. copartitioned join





Data Flow Network traffic: size(A) + size(B)

#### Distributed Joins – Broadcast Joins

If size(A) << size(B), e.g. A is 1MB, and B is 1TB, can we avoid shuffling all the data?



### Shared storage architecture

Can scale compute / storage separately. "Cloud" model. Examples: Hadoop, Spark.



# Why didn't Google just use database systems?

# Challenges Google faced

Data size growing (volume & velocity) - Processing has to scale out over large clusters

Complexity of analysis increasing (variety)

- Massive ETL (web crawling)
- Machine learning, graph processing









Google web index: 10+ PB

Types of data: HTML pages, PDFs, images, videos, ...

Cost of 1 TB of disk: \$50

Time to read 1 TB from disk: 6 hours (50 MB/s)



# The Big Data Problem

Semi-/Un-structured data doesn't fit well with databases

Single machine can no longer process or even store all the data!

Only solution is to **distribute** general storage & processing over clusters.



#### The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

Google-

#### ABSTRACT

We have designed and implemented the Google File System, a scalable distributed file system for large distributed data-intensive applications. It provides fault tolerance while running on inexpensive commodity hardware, and it delivers high aggregate performance to a large number of clients.

While sharing many of the same goals as previous distributed file systems, our design has been driven by observations of our application workloads and technological environment, both current and anticipated, that reflect a marked departure from some earlier file system assumptions. This has led us to reexamine traditional choices and explore radically different design points.

The file system has successfully met our storage needs. It is widely deployed within Google as the storage platform for the generation and processing of data used by our service as well as research and development efforts that require large data sets. The largest cluster to date provides hundreds of terabytes of storage across thousands of disks on over a thousand machines, and it is concurrently accessed by hundreds of clients.

In this paper, we present file system interface extensions designed to support distributed applications, discuss many aspects of our design, and report measurements from both micro-benchmarks and real world use.

#### 1. INTRODUCTION

We have designed and implemented the Google File System (GFS) to meet the rapidly growing demands of Google's data processing needs. GFS shares many of the same goals as previous distributed file systems such as performance, scalability, reliability, and availability. However, its design has been driven by key observations of our application workloads and technological environment, both current and anticipated, that reflect a marked departure from some earlier file system design assumptions. We have reexamined traditional choices and explored radically different points in the design space.

First, component failures are the norm rather than the exception. The file system consists of hundreds or even thousands of storage machines built from inexpensive commodity parts and is accessed by a comparable number of client machines. The quantity and quality of the components virtually guarantee that some are not functional at any given time and some will not recover from their current failures. We have seen problems caused by application bugs, operating system bugs, human errors, and the failures of disks, memory, connectors, networking, and power supplies. Therefore, constant monitoring, error detection, fault tolerance, and automatic recovery must be integral to the system.

Second, files are huge by traditional standards. Multi-GB



#### GFS Assumptions

"Component failures are the norm rather than the exception"

"Files are huge by traditional standards"

"Most files are mutated by appending new data rather than overwriting existing data"

- GFS paper

databricks<sup>-</sup>



#### **Example:**



Files are composed of set of blocks

e.g., Block Size = 64MB

- Typically 64MB in size
- Each block is stored as a separate file in the local file system (e.g. NTFS)

edatabricks<sup>\*</sup>

#### Block Placement Example:





#### GFS Architecture

edatabricks<sup>\*</sup>



Failures, Failures, Failures

GFS paper: "Component failures are the norm rather than the exception."





Failure types:

- Disk errors and failures
- DataNode failures
- Switch/Rack failures
- NameNode failures
- Datacenter failures







#### GFS Summary

Store large, immutable (append-only) files

Scalability

Reliability

Availability



## Google Datacenter

#### How do we program this thing?

30

# Traditional Network Programming

Message-passing between nodes (MPI, RPC, etc)

**Really hard** to do at scale:

- How to split problem across nodes?
  - Important to consider network and data locality
- How to deal with failures?
  - If a typical server fails every 3 years, a 10,000-node cluster sees 10 faults/day!
- Even without failures: stragglers (a node is slow)

Almost nobody does this!



#### Data-Parallel Models

Restrict the programming interface so that the system can do more automatically

"Here's an operation, run it on all of the data"

- I don't care *where* it runs (you schedule that)
- In fact, feel free to run it *twice* on different nodes
- Simlar to "declarative programming" in databases



## MapReduce Programming Model

Data type: key-value *records* 

Map function:

(K<sub>in</sub>, V<sub>in</sub>) -> list(K<sub>inter</sub>, V<sub>inter</sub>)

Reduce function:



### Hello World of Big Data: Word Count



#### MapReduce Execution

Automatically split work into many small tasks

Send map tasks to nodes based on data locality

Load-balance dynamically as tasks finish

Shuffle (remember Exchange?) to handle cross-task communication



## MapReduce Fault Recovery

If a task fails, re-run it and re-fetch its input

• Requirement: input is immutable

If a node fails, re-run its map tasks on others

• Requirement: task result is deterministic & side effect is idempotent

If a task is slow, launch 2nd copy on other node

• Requirement: same as above


## MapReduce Summary

By providing a data-parallel model, MapReduce greatly simplified cluster computing:

- Automatic division of job into tasks
- Locality-aware scheduling
- Load balancing
- Recovery from failures & stragglers

Also flexible enough to model a lot of workloads...





#### Open-sourced by Yahoo!

• modeled after the two Google papers

Two components:

- Storage: Hadoop Distributed File System (HDFS)
- Compute: Hadoop MapReduce

Sometimes synonymous with Big Data



#### **MapReduce:** A major step backwards

#### By David DeWitt on January 17, 2008 4:20 PM | Permalink | Comments (44) | TrackBacks (1)

[Note: Although the system attributes this post to a single author, it was written by David J. DeWitt and Michael Stonebraker]

On January 8, a Database Column reader asked for our views on new distributed database research efforts, and we'll begin here v to discuss it, since the recent trade press has been filled with news of the revolution of so-called "cloud computing." This paradigi processors working in parallel to solve a computing problem. In effect, this suggests constructing a data center by lining up a large much smaller number of high-end servers.

For example, IBM and Google have announced plans to make a 1,000 processor cluster available to a few select universities to te software tool called MapReduce [1]. Berkeley has gone so far as to plan on teaching their freshman how to program using the Ma

As both educators and researchers, we are amazed at the hype that the MapReduce proponents have spread about how it represen data-intensive applications. MapReduce may be a good idea for writing certain types of general-purpose computations, but to the

- 1. A giant step backward in the programming paradigm for large-scale data intensive applications
- 2. A sub-optimal implementation, in that it uses brute force instead of indexing
- 3. Not novel at all -- it represents a specific implementation of well known techniques developed nearly 25 years ago
- 4. Missing most of the features that are routinely included in current DBMS

#### databricks<sup>\*</sup>

# Why didn't Google just use databases?

#### Cost

• database vendors charge by \$/TB or \$/core

#### Scale

• no database systems at the time had been demonstrated to work at that scale (# machines or data size)

Data Model

• A lot of semi-/un-structured data: web pages, images, videos

Programming Model

• SQL not expressive (or "simple") enough for many Google tasks (e.g. crawl the web, build inverted index, log analysis on unstructured data)

Not-invented-here



## MapReduce Programmability

Most real applications require multiple MR steps

- Google indexing pipeline: 21 steps
- Analytics queries (e.g. count clicks & top K): 2 5 steps
- Iterative algorithms (e.g. PageRank): 10's of steps

Multi-step jobs create spaghetti code

- 21 MR steps -> 21 mapper and reducer classes
- Lots of boilerplate code per step



## Higher Level Frameworks



#### SELECT count(\*) FROM users

In reality, 90+% of MR jobs are generated by Hive SQL





- A = load 'foo'; B = group A all;
  - C = foreach B generate COUNT(A);



# Problems with MapReduce

- 1. Programmability
  - We covered this earlier ...

- 1. Performance
  - Each MR job writes all output to disk
  - Lack of more primitives such as data broadcast





Started in Berkeley in 2010; donated to Apache Software Foundation in 2013

Programmability: DSL in Scala / Java / Python

- Functional transformations on collections
- 5 10X less code than MR
- Interactive use from Scala / Python REPL
- You can unit test Spark programs!

Performance:

- General DAG of tasks (i.e. multi-stage MR)
- Richer primitives: in-memory cache, torrent broadcast, etc
- Can run 10 100X faster than MR

#### databricks<sup>-</sup>

## Programmability

#### Full Google WordCount:

```
#include "mapreduce/mapreduce.h"
```

Emit(text.substr(

```
// User's map function
```

```
class SplitWords: public Mapper {
  public:
    virtual void Map(const MapInput& input)
    {
      const string& text = input.value();
```

```
const int n = text.size();
for (int i = 0; i < n; ) {
    // Skip past leading whitespace
    while (i < n && isspace(text[i]))
    i++:
```

```
// Find word end
int start = i;
while (i < n && !isspace(text[i])) };
i++;
if (start < i) RE</pre>
```

start,i-start),"1");

```
REGISTER REDUCER(Sum):
```

class Sum: public Reducer {

int64 value = 0:

virtual void Reduce(ReduceInput\* input)

// Iterate over all entries with the

input->value());

// same key and add the values

while (!input->done()) {

input->NextValue();

value += StringToInt(

// Emit sum for input->key()

Emit(IntToString(value));

public:

MapReduceSpecification spec; for (int i = 1; i < argc; i++) { MapReduceInput\* in= spec.add\_input(); in->set\_format("text"); in->set\_filepattern(argv[i]); in->set\_mapper\_class("SplitWords"); }

// Specify the output files MapReduceOutput\* out = spec.output(); out->set\_filebase("/gfs/test/freq"); out->set\_num\_tasks(100); out->set\_format("text"); out->set\_reducer\_class("Sum");

```
// Do partial sums within map
out->set_combiner_class("Sum");
```

// Tuning parameters
spec.set\_machines(2000);
spec.set\_map\_megabytes(100);
spec.set\_reduce\_megabytes(100);

```
// Now run it
MapReduceResult result;
if (!MapReduce(spec, &result)) abort();
return 0;
}
```

```
// User's reduce function
```

REGISTER\_MAPPER(Splitwords);

3

};

int main(int argc, char\*\* argv) {
 ParseCommandLineFlags(argc, argv);



### Programmability

Spark WordCount:

counts.save("out.txt")



#### Performance







### Spark stack diagram





## Spark Summary

Spark generalizes MapReduce to provide:

- High performance
- Better programmability
- (consequently) a unified engine

The most active open source data project with over 1000 contributors



### How is Spark different from MPP databases?

Use cases: ETL, log analysis, advanced analytics (beyond SQL)

Interfaces: SQL and programmatic access (Scala, Java, Python)

Architecture: "shared nothing" vs "decoupled storage from compute"



"Spark is the Taylor Swift of big data software."

- Derrick Harris, Fortune



## Spark history



databricks<sup>-</sup>







```
pdata.map(lambda x: (x.dept, [x.age, 1])) \
.reduceByKey(lambda x, y: [x[0] + y[0], x[1] + y[1]]) \
.map(lambda x: [x[0], x[1][0] / x[1][1]]) \
.collect()
```

data.groupBy("dept").avg("age")



### DataFrames in Spark

Distributed data frame abstraction for Java, Python, R, Scala

Similar APIs as single-node tools (Pandas, dplyr), i.e. easy to learn

> head(filter(df, df\$waiting < 50)) # an example in R
## eruptions waiting
##1 1.750 47
##2 1.750 47
##3 1.867 48</pre>



### Spark SQL



databricks<sup>-</sup>

#### DataFrame API

DataFrames hold rows with a known schema and offer relational operations on them through a DSL

val users = spark.sql("select \* from users")
val massUsers = users(users("country") === "ES")
massUsers.count() Expression AST
massUsers.groupBy("name").avg("age")



#### Spark RDD Execution





#### Spark DataFrame Execution





#### Spark DataFrame Execution



Simple wrappers to create logical plan

Intermediate representation for computation



Can we improve Spark performance by an order of magnitude?





How do we get fast distributed query processing?

Fast single-node query processing + fast exchange + good query plans (query optimizations)



## Going back to the fundamentals

Difficult to get order of magnitude performance speed ups with profiling techniques

- For 10x improvement, would need of find top hotspots that add up to 90% and make them instantaneous
- For 100x, 99%

Instead, look bottom up, how fast should *it* run?



# select count(\*) from store\_sales where ss\_item\_sk = 1000





### Volcano Iterator Model

Standard for 30 years: almost all databases do it

Each operator is an "iterator" that consumes records from its input operator

```
class Filter {
 def next(): Boolean = {
    var found = false
    while (!found && child.next()) {
      found = predicate(child.fetch())
    return found
 def fetch(): InternalRow = {
    child.fetch()
```



```
What if we hire a college freshman to implement this query in Java in 10 mins?
```

```
select count(*) from store_sales
where ss_item_sk = 1000
```

```
var count = 0
for (ss_item_sk in store_sales) {
    if (ss_item_sk == 1000) {
        count += 1
     }
}
```



Volcano model 30+ years of database research

VS

college freshman hand-written code in 10 mins







Note: End-to-end, single thread, single column, and data originated in Parquet on disk

## How does a student beat 30 years of research?

Volcano

- Many virtual function calls 1.
- Data in memory (or cache) 2. 2.
- No loop unrolling, SIMD, pipelining Compiler loop unrolling, SIMD, 3. 3. pipelining

Take advantage of all the information that is known **after** query compilation



#### hand-written code

- No virtual function calls
- Data in CPU registers

# Whole-stage Codegen

Fusing operators together so the generated code looks like hand optimized code:

- Identity chains of operators ("stages")
- Compile each stage into a single function
- Functionality of a general purpose execution engine; performance as if hand built system just to run your query



### Whole-stage Codegen: Planner



databricks<sup>-</sup>

## Whole-stage Codegen: Spark as a "Compiler"



```
long count = 0;
for (ss_item_sk in store_sales) {
    if (ss_item_sk == 1000) {
        count += 1;
    }
```


### The new APIs made this possible

DataFrame specifies high-level "intent", similar to SQL

Spark understands the intent, and then optimizes the execution

API principle: Sufficiently abstracted to allow automatic optimization



## Two interesting directions for Spark

Multi-core scalability

- Machine with 128 cores start to look remarkably similar to distributed systems
- Spark runs reasonably well on a single laptop

### Continuous (streaming) applications

• Very often a production data pipeline runs continuously against infinite data



### Return of SQL



C () () + When we first began putting together the schedule for

Structure: Data several months ago, we knew that running SQL queries on Hadoop would be a big deal — we just didn't know how big a deal it would actually become. Fast-forward to today, a mere month away from the event (March 20-21 in New York), and the writing on the wall is a lot clearer. SQL



#### Dremel: Interactive Analysis of Web-Scale Datasets

### Tenzing A SQL Implementation On The MapReduce Framework

#### **Processing a Trillion Cells per Mouse Click**

Alexander Hall, Olaf Bachmann, Robert Büssow, Silviu Gănceanu, Marc Nunkesser Google, Inc.

{alexhall, olafb, buessow, silviu, marcnunkesser}@google.com

#### ABSTR

Dremel is a sis of readtrees and co tion queries to thousand of users at and implen MapReduce age represe few-thousand

1. INT for more than the second secon

#### Tenzing is a query engi for ad hoc analysis of

ABSTRACT

nor at not any size of the second sec

#### 1. INTRODUCTI

The MapReduce [9] fra both inside and outside has quickly become the f

#### e SQL ir ABSTRACT

Biswar

biswape

Prathy

Arago

prathyus

Chattopa

Column-oriented database systems have been a real game changer for the industry in recent years. Highly tuned and performant systems have evolved that provide users with the possibility of answering ad hoc queries over large datasets in an interactive manner.

In this paper we present the column-oriented datastore developed as one of the central components of PowerDrill<sup>1</sup>. It combines the advantages of columnar data layout with other known techniques (such as using composite range partitions) and extensive algorithmic engineering on key data structures. The main goal of the latter being to reduce the main memory footprint and to increase the efficiency in processing typical user queries. In this combination we achieve large speed-ups. These enable a highly interactive Web UI where it is common that a single mouse click leads to processing a trillion values in the underlying dataset.

#### 1. INTRODUCTION

In the last decade, large companies have been placing an ever increasing importance on mining their in-house databases; often recognizing them as one of their core assets. With this and with dataset sizes growing at an enormous relevant columns. Obviously, in denormalized datasets with often several thousands of columns this can make a huge difference compared to the the row-wise storage used by most database systems. Moreover, columnar formats compress very well, thus leading to less I/O and main memory usage.

At Google multiple frameworks have been developed to support data analysis at a very large scale. Best known and most widely used are MapReduce [13] and Dremel [23]. Both are highly distributed systems processing requests on thousands of machines. The latter is a column-store providing interactive query speeds for ad hoc SQL-like queries.

In this paper we present an alternative column-store developed at Google as part of the PowerDrill project. For typical user queries originating from an interactive Web UI (developed as part of the same project) it gives a performance boost of 10–100x compared to traditional columnstores which do full scans of the data.

#### Background

Before diving into the subject matter, we give a little background about the PowerDrill system and how it is used for data analysis at Google. Its most visible part is an interactive Web UI making heavy use of AJAX with the help of the Google Web Toolkit [16]. It enables data visualization and



Why SQL?

Almost everybody knows SQL

Easier to write than MR (even Spark) for analytic queries

Lingua franca for data analysis tools (business intelligence, etc)

Schema is useful (key-value is limited)



## What's really different?

SQL on BD (Hadoop/Spark) vs SQL in DB?

Two perspectives:

1. Flexibility in data and compute model

2. Fault-tolerance



# Traditional Database Systems (Monolithic)

Applications

SQL

Physical Execution Engine (Dataflow)

Storage Manager

One way (SQL) in/out and data must be structured



### Big Data Systems (Layered)



General Storage (HDFS, S3, etc)

Decoupled storage, low vs high level compute Structured, semi-structured, unstructured data Schema on read, schema on write



Evolution of Database Systems Decouple Storage from Compute

Traditional

2014 - 2017



support for nested data (e.g. JSON)



### Perspective 2: Fault Tolerance

Database systems: coarse-grained fault tolerance

• If fault happens, fail the query (or rerun from the beginning)

MapReduce: fine-grained fault tolerance

• Rerun failed tasks, not the entire query





Insights from Googlers into our products, technology, and the Google culture



### Sorting 1PB with MapReduce

Posted: Friday, November 21, 2008



At Google we are fanatical about organizing the world's information. As a result, we spend a lot of time finding better ways to sort information using MapReduce, a key component of our software infrastructure that allows us to run multiple processes simultaneously. MapReduce is a perfect solution for many of the computations we run daily We were writing it to 48,000 hard drives (we did not use the trans full capacity of these disks, though), and every time we ran In ou our sort, at least one of our disks managed to break (this is ed expe not surprising at all given the duration of the test, the number spirit prog rt gene of disks involved, and the expected lifetime of hard disks). information.



### MapReduce Checkpointing-based Fault Tolerance

Checkpoint all intermediate output

- Replicate them to multiple nodes
- Upon failure, recover from checkpoints
- High cost of fault-tolerance (disk and network I/O)

Necessary for PBs of data on thousands of machines What if I have 20 nodes and my query takes only 1 min?



### Spark Unified Checkpointing and Rerun

Simple idea: remember the lineage to create an RDD, and recompute from last checkpoint.

When fault happens, query still continues.

When faults are rare, no need to checkpoint, i.e. cost of fault-tolerance is low.



# What's Really Different?

Monolithic vs layered storage & compute

- DB becoming more layered
- Although "Big Data" still far more flexible than DB

Fault-tolerance

- DB mostly coarse-grained fault-tolerance, assuming faults are rare
- Big Data mostly fine-grained fault-tolerance, with new strategies in Spark to mitigate faults at low cost





DB evolving towards BD

- Decouple storage from compute
- Provide alternative programming models
- Semi-structured data (JSON, XML, etc)

BD evolving towards DB

- Schema beyond key-value
- Separation of logical vs physical plan
- Query optimization
- More optimized storage formats



## What did we talk about today?

What is "Big Data" (BD)?

Distributed data processing / MPP databases

GFS, MapReduce, Hadoop

Spark

What's different between BD and DB?



# Thanks! Questions?

# (And yes we are hiring)

rxin@databricks.com



Acknowledgement

Some materials taken from:

Zaharia. Processing Big Data with Small Programs

Franklin. SQL, NoSQL, NewSQL? CS186 2013

DeWitt. Data Warehousing in the Cloud, The End of Shared Nothing

