
Big Data and Distributed Data
Processing (Analytics)

Reynold Xin @rxin
2017-12-05, CS145 Guest Lecture, Stanford

Who am I?

Co-founder & Chief Architect @ Databricks
• Day job: direction for data processing (including Spark)
• Night job: code contributor to Apache Spark, #1 committer

On-leave from PhD @ Berkeley AMPLab

Transaction
Processing

(OLTP)

“User A bought item b”

Analytics

(OLAP)

“What is revenue each store
this year?”

Agenda

What is “Big Data” (BD)?

Distributed data processing / MPP databases

GFS, MapReduce, Hadoop

Spark

What’s different between BD and DB?

What is “Big Data”?

Gartner’s Definition

“Big data” is high-volume, -velocity and -variety information assets
that demand cost-effective, innovative forms of information
processing for enhanced insight and decision making.

3 Vs of Big Data

Volume: data size

Velocity: rate of data coming in

Variety (most important V): data sources, formats, workloads

“Big Data” can also refer to the tech stack

Some concepts pioneered by Google

Massively Parallel Processing
Databases (MPP)

Shared nothing architecture

Commodity servers connected via commodity networking
Example: Teradata, Redshift

…

Node	K

MEM

CPU

Node	2

MEM

CPU

Node	1

MEM

CPU

Interconnection Network

Co-located compute
and storage

* Source: DeWitt, Data Warehousing in the Cloud, The End of “Shared-Nothing”

How does query processing work?

Embarrassingly parallel operators (each node doing their own work):
• Scan
• Filter

Aggregate?

Join?

select count(*) from store_sales
where ss_item_sk = 1000

Distributed Aggregation

Scan

Filter

Aggregate

Plan

Final
Aggregate

Distributed Plan

Scan

Filter

Partial
Aggregate

Exchange

Exchange Operator

“Shuffles” data to the right partition (node / thread), hash or range

Hash partitioning: partition_id(row) = hash(key(row)) % N

Separation of concerns in distributed query processing
• Other operators are no different from single-threaded implementations (e.g.

aggregate, scan, filter)

Distributed Joins - Shuffle Joins

A.k.a. copartitioned join

Scan B

Exchange

Join

Scan A

Exchange

Plan

Data Flow

A1 A2 B1 B2 B3

Join
1

Join
2

Network traffic: size(A) + size(B)

Distributed Joins – Broadcast Joins

If size(A) << size(B), e.g. A is 1MB, and B is 1TB, can we avoid shuffling
all the data?

Scan B

Join

Scan A

Broadcast
Exchange

Plan

Data Flow

A1 B1 B2 B3

Join
1

Join
2

Join
3

Network traffic: size(A) * N

Shared storage architecture

Can scale compute / storage separately.
“Cloud” model. Examples: Hadoop, Spark.

Storage Area Network

…

Node	1

MEM

CPU

Node	2

MEM

CPU

Node	K

MEM

CPU
Network can limit scaling as it
must carry I/O traffic

Local disks for caching DB
pages, temp files, …

* Source: DeWitt, Data Warehousing in the Cloud, The End of “Shared-Nothing”

Why didn’t Google just use
database systems?

Challenges Google faced

Data size growing (volume & velocity)
- Processing has to scale out over large clusters

Complexity of analysis increasing (variety)
- Massive ETL (web crawling)
- Machine learning, graph processing

Examples

Google web index: 10+ PB

Types of data: HTML pages, PDFs, images, videos, …

Cost of 1 TB of disk: $50

Time to read 1 TB from disk: 6 hours (50 MB/s)

The Big Data Problem

Semi-/Un-structured data doesn’t fit well with databases

Single machine can no longer process or even store all the data!

Only solution is to distribute general storage & processing over
clusters.

GFS Assumptions

“Component failures are the norm rather than the exception”

“Files are huge by traditional standards”

“Most files are mutated by appending new data rather than
overwriting existing data”

- GFS paper

File Splits

Large	File
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001

…

6440MB

Block	
1

Block	
2

Block	
3

Block	
4

Block	
5

Block	
6

Block	
100

Block	
101

64MB 64MB 64MB 64MB 64MB 64MB

…

64MB 40MB

Block	
1

Block	
2

Let’s color-code them

Block	
3

Block	
4

Block	
5

Block	
6

Block	
100

Block	
101

e.g., Block Size = 64MB
Files are composed of set of blocks

• Typically 64MB in size
• Each block is stored as a separate file in the

local file system (e.g. NTFS)

Default placement policy:
• First copy is written to the node creating the file (write affinity)
• Second copy is written to a data node within the same rack

(to minimize cross-rack network traffic)
• Third copy is written to a data node in a different rack

(to tolerate switch failures)

Node	5Node	4Node	3Node	2Node	1

Block Placement

Block	
1

Block	
3

Block	
2

Block	
1

Block	
3

Block	
2

Block	
3

Block	
2

Block	
1

e.g., Replication factor = 3

GFS Architecture
NameNode BackupNode

DataNode DataNode DataNode DataNode DataNode

(heartbeat, balancing, replication, etc.)

namespace backups

Failure types:
q Disk errors and failures
q DataNode failures
q Switch/Rack failures
q NameNode failures
q Datacenter failures

Failures, Failures, Failures

GFS paper: “Component failures are the norm
rather than the exception.”

NameNode

DataNode

GFS Summary

Store large, immutable (append-only) files

Scalability

Reliability

Availability

Google Datacenter

How do we program this thing?

30

Traditional Network Programming

Message-passing between nodes (MPI, RPC, etc)

Really hard to do at scale:
- How to split problem across nodes?

– Important to consider network and data locality

- How to deal with failures?
– If a typical server fails every 3 years, a 10,000-node cluster sees 10 faults/day!

- Even without failures: stragglers (a node is slow)
Almost nobody does this!

Data-Parallel Models

Restrict the programming interface so that the system can do more
automatically

“Here’s an operation, run it on all of the data”
- I don’t care where it runs (you schedule that)
- In fact, feel free to run it twice on different nodes
- Simlar to “declarative programming” in databases

MapReduce Programming Model

Data type: key-value records

Map function:
(Kin, Vin) -> list(Kinter, Vinter)

Reduce function:
(Kinter, list(Vinter)) -> list(Kout, Vout)

Hello World of Big Data: Word Count

the quick
brown

fox

the fox
ate the
mouse

how now
brown

cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1
ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

MapReduce Execution

Automatically split work into many small tasks

Send map tasks to nodes based on data locality

Load-balance dynamically as tasks finish

Shuffle (remember Exchange?) to handle cross-task communication

MapReduce Fault Recovery

If a task fails, re-run it and re-fetch its input
• Requirement: input is immutable

If a node fails, re-run its map tasks on others
• Requirement: task result is deterministic & side effect is idempotent

If a task is slow, launch 2nd copy on other node
• Requirement: same as above

MapReduce Summary

By providing a data-parallel model, MapReduce greatly simplified
cluster computing:

• Automatic division of job into tasks
• Locality-aware scheduling
• Load balancing
• Recovery from failures & stragglers

Also flexible enough to model a lot of workloads…

Hadoop

Open-sourced by Yahoo!
• modeled after the two Google papers

Two components:
• Storage: Hadoop Distributed File System (HDFS)
• Compute: Hadoop MapReduce

Sometimes synonymous with Big Data

Why didn’t Google just use databases?

Cost
• database vendors charge by $/TB or $/core

Scale
• no database systems at the time had been demonstrated to work at that scale (# machines or data size)

Data Model
• A lot of semi-/un-structured data: web pages, images, videos

Programming Model
• SQL not expressive (or “simple”) enough for many Google tasks (e.g. crawl the web, build inverted index, log

analysis on unstructured data)

Not-invented-here

MapReduce Programmability

Most real applications require multiple MR steps
• Google indexing pipeline: 21 steps
• Analytics queries (e.g. count clicks & top K): 2 – 5 steps
• Iterative algorithms (e.g. PageRank): 10’s of steps

Multi-step jobs create spaghetti code
• 21 MR steps -> 21 mapper and reducer classes
• Lots of boilerplate code per step

Higher Level Frameworks

SELECT count(*) FROM users

A = load 'foo';
B = group A all;
C = foreach B generate COUNT(A);

In reality, 90+% of MR jobs are generated by Hive SQL

Problems with MapReduce

1. Programmability
• We covered this earlier …

1. Performance
• Each MR job writes all output to disk
• Lack of more primitives such as data broadcast

Spark

Started in Berkeley in 2010; donated to Apache Software Foundation in 2013

Programmability: DSL in Scala / Java / Python
• Functional transformations on collections
• 5 – 10X less code than MR
• Interactive use from Scala / Python REPL
• You can unit test Spark programs!

Performance:
• General DAG of tasks (i.e. multi-stage MR)
• Richer primitives: in-memory cache, torrent broadcast, etc
• Can run 10 – 100X faster than MR

Programmability

#include "mapreduce/mapreduce.h"

// User’s map function
class SplitWords: public Mapper {

public:

virtual void Map(const MapInput& input)
{

const string& text = input.value();

const int n = text.size();
for (int i = 0; i < n;) {

// Skip past leading whitespace
while (i < n && isspace(text[i]))

i++;
// Find word end
int start = i;

while (i < n && !isspace(text[i]))
i++;

if (start < i)

Emit(text.substr(
start,i-start),"1");

}
}

};

REGISTER_MAPPER(SplitWords);

// User’s reduce function

class Sum: public Reducer {
public:
virtual void Reduce(ReduceInput* input)
{

// Iterate over all entries with the

// same key and add the values
int64 value = 0;
while (!input->done()) {

value += StringToInt(
input->value());

input->NextValue();
}
// Emit sum for input->key()
Emit(IntToString(value));

}

};

REGISTER_REDUCER(Sum);

int main(int argc, char** argv) {
ParseCommandLineFlags(argc, argv);

MapReduceSpecification spec;
for (int i = 1; i < argc; i++) {

MapReduceInput* in= spec.add_input();
in->set_format("text");
in->set_filepattern(argv[i]);

in->set_mapper_class("SplitWords");
}

// Specify the output files
MapReduceOutput* out = spec.output();
out->set_filebase("/gfs/test/freq");
out->set_num_tasks(100);
out->set_format("text");
out->set_reducer_class("Sum");

// Do partial sums within map
out->set_combiner_class("Sum");

// Tuning parameters
spec.set_machines(2000);
spec.set_map_megabytes(100);
spec.set_reduce_megabytes(100);

// Now run it
MapReduceResult result;

if (!MapReduce(spec, &result)) abort();
return 0;

}

Full Google WordCount:

Programmability

Spark WordCount:

val file = spark.textFile(“hdfs://...”)
val counts = file.flatMap(line => line.split(“ ”))

.map(word => (word, 1))

.reduceByKey(_ + _)

counts.save(“out.txt”)

Performance

0.96 110

0 25 50 75 100 125

Logistic Regression

4.1 155

0 30 60 90 120 150 180

K-Means Clustering Hadoop
MR

Time per Iteration (s)

SQL Streaming MLlib

Spark Core (RDD)

GraphX

Spark stack diagram

Spark Summary

Spark generalizes MapReduce to provide:
• High performance
• Better programmability
• (consequently) a unified engine

The most active open source data project with over 1000 contributors

How is Spark different from MPP databases?

Use cases: ETL, log analysis, advanced analytics (beyond SQL)

Interfaces: SQL and programmatic access (Scala, Java, Python)

Architecture: “shared nothing” vs “decoupled storage from compute”

“Spark is the Taylor Swift
of big data software.”

- Derrick Harris, Fortune

2012

started
@

Berkeley

2010

research
paper
RDD

2013

Databricks
started

& donated
to ASF

2014

Spark 1.0 & libraries
(SQL, ML, GraphX)

2015

DataFrames
Tungsten

ML Pipelines
Dataset

R

2016

Structured Streamin
Code generation

Vectorization

Spark history

Scaling Spark users

Early adopters

Data Scientists
Statisticians
R users
PyData
…

Users

Understands
MapReduce

& functional APIs

DataFrames in Spark

> head(filter(df, df$waiting < 50)) # an example in R
eruptions waiting
##1 1.750 47
##2 1.750 47
##3 1.867 48

Distributed data frame abstraction for Java, Python, R, Scala

Similar APIs as single-node tools (Pandas, dplyr), i.e. easy to learn

Spark SQL

Logical
Plan

Physical
Plan

Catalog

Optimizer
RDDs

…

Data
Source

API

SQL

Code

Generator

Data
Frames

DataFrame API

DataFrames hold rows with a known schema and offer relational
operations on them through a DSL

val users = spark.sql(“select * from users”)

val massUsers = users(users(“country”) === “ES”)

massUsers.count()

massUsers.groupBy(“name”).avg(“age”)

Expression AST

Spark RDD Execution

Java/Scala
frontend

JVM
backend

Python
frontend

Python
backend

opaque closures
(user-defined functions)

Spark DataFrame Execution

DataFrame
frontend

Logical Plan

Physical
execution

Catalyst
optimizer

Intermediate representation for computation

Spark DataFrame Execution

Python
DF

Logical Plan

Physical
execution

Catalyst
optimizer

Java/Scala
DF SQL

Intermediate representation for computation

Simple wrappers to create logical plan

Can we improve Spark
performance by an
order of magnitude?

Performance

How do we get fast distributed query processing?

Fast single-node query processing + fast exchange + good query plans
(query optimizations)

Going back to the fundamentals

Difficult to get order of magnitude performance speed ups with
profiling techniques

• For 10x improvement, would need of find top hotspots that add up to 90% and
make them instantaneous

• For 100x, 99%

Instead, look bottom up, how fast should it run?

Scan

Filter

Project

Aggregate

select count(*) from store_sales
where ss_item_sk = 1000

Volcano Iterator Model

Standard for 30 years: almost
all databases do it

Each operator is an “iterator”
that consumes records from its
input operator

class Filter {
def next(): Boolean = {
var found = false
while (!found && child.next()) {
found = predicate(child.fetch())

}
return found

}

def fetch(): InternalRow = {
child.fetch()

}
…

}

What if we hire a college freshman to
implement this query in Java in 10 mins?

select count(*) from store_sales
where ss_item_sk = 1000

var count = 0
for (ss_item_sk in store_sales) {
if (ss_item_sk == 1000) {
count += 1

}
}

Volcano model
30+ years of database research

college freshman
hand-written code in 10 minsvs

Volcano 13.95 million
rows/sec

college
freshman

125 million
rows/sec

Note: End-to-end, single thread, single column, and data originated in Parquet on disk

High throughput

How does a student beat 30 years of research?

Volcano

1. Many virtual function calls

2. Data in memory (or cache)

3. No loop unrolling, SIMD, pipelining

hand-written code

1. No virtual function calls

2. Data in CPU registers

3. Compiler loop unrolling, SIMD,
pipelining

Take advantage of all the information that is known after query compilation

Whole-stage Codegen

Fusing operators together so the generated code looks like hand
optimized code:
- Identity chains of operators (“stages”)
- Compile each stage into a single function
- Functionality of a general purpose execution engine; performance
as if hand built system just to run your query

* Source: Neumann. Efficiently Compiling Efficient Query Plans for Modern Hardware.

Whole-stage Codegen: Planner

Scan

Filter

Project

Aggregate

long count = 0;
for (ss_item_sk in store_sales) {
if (ss_item_sk == 1000) {
count += 1;

}
}

Whole-stage Codegen: Spark as a “Compiler”

The new APIs made this possible

DataFrame specifies high-level “intent”, similar to SQL

Spark understands the intent, and then optimizes the execution

API principle: Sufficiently abstracted to allow automatic optimization

Two interesting directions for Spark

Multi-core scalability
• Machine with 128 cores start to look remarkably similar to distributed systems
• Spark runs reasonably well on a single laptop

Continuous (streaming) applications
• Very often a production data pipeline runs continuously against infinite data

Return of SQL

Why SQL?

Almost everybody knows SQL

Easier to write than MR (even Spark) for analytic queries

Lingua franca for data analysis tools (business intelligence, etc)

Schema is useful (key-value is limited)

What’s really different?

SQL on BD (Hadoop/Spark) vs SQL in DB?

Two perspectives:

1. Flexibility in data and compute model

2. Fault-tolerance

Traditional Database Systems (Monolithic)

Physical Execution Engine (Dataflow)

SQL

Applications

One way (SQL) in/out and data must be structured

Data-Parallel Engine (Spark, MR)

SQL DataFrame M.L.

Decoupled storage, low vs high level compute
Structured, semi-structured, unstructured data

Schema on read, schema on write

Big Data Systems (Layered)

Evolution of Database Systems
Decouple Storage from Compute

Physical Execution Engine (Dataflow)

SQL

Applications

Physical Execution Engine (Dataflow)

SQL

Applications

Traditional 2014 - 2017

IBM Big Insight
Oracle

EMC Greenplum
…

support for nested data (e.g. JSON)

Perspective 2: Fault Tolerance

Database systems: coarse-grained fault tolerance
• If fault happens, fail the query (or rerun from the beginning)

MapReduce: fine-grained fault tolerance
• Rerun failed tasks, not the entire query

We were writing it to 48,000 hard drives (we did not use the
full capacity of these disks, though), and every time we ran
our sort, at least one of our disks managed to break (this is
not surprising at all given the duration of the test, the number
of disks involved, and the expected lifetime of hard disks).

MapReduce
Checkpointing-based Fault Tolerance

Checkpoint all intermediate output
• Replicate them to multiple nodes
• Upon failure, recover from checkpoints
• High cost of fault-tolerance (disk and network I/O)

Necessary for PBs of data on thousands of machines
What if I have 20 nodes and my query takes only 1 min?

Spark
Unified Checkpointing and Rerun

Simple idea: remember the lineage to create an RDD, and recompute
from last checkpoint.

When fault happens, query still continues.

When faults are rare, no need to checkpoint, i.e. cost of fault-tolerance
is low.

What’s Really Different?

Monolithic vs layered storage & compute
• DB becoming more layered
• Although “Big Data” still far more flexible than DB

Fault-tolerance
• DB mostly coarse-grained fault-tolerance, assuming faults are rare
• Big Data mostly fine-grained fault-tolerance, with new strategies in Spark to

mitigate faults at low cost

Convergence

DB evolving towards BD
• Decouple storage from compute
• Provide alternative programming models
• Semi-structured data (JSON, XML, etc)

BD evolving towards DB
• Schema beyond key-value
• Separation of logical vs physical plan
• Query optimization
• More optimized storage formats

What did we talk about today?

What is “Big Data” (BD)?

Distributed data processing / MPP databases

GFS, MapReduce, Hadoop

Spark

What’s different between BD and DB?

Thanks! Questions?

(And yes we are hiring)

rxin@databricks.com

Acknowledgement

Some materials taken from:

Zaharia. Processing Big Data with Small Programs

Franklin. SQL, NoSQL, NewSQL? CS186 2013

DeWitt. Data Warehousing in the Cloud, The End of Shared Nothing

