
Big Data Analytics Systems: 
What Goes Around Comes Around 

Reynold Xin, CS186 guest lecture @ Berkeley 
Apr 9, 2015 



Who am I? 

Co-founder & architect @ Databricks 
 
On-leave from PhD @ Berkeley AMPLab 
 
Current world record holder in 100TB sorting (Daytona 
GraySort Benchmark) 



 
Transaction 
Processing 

 
(OLTP) 

 
“User A bought item b” 

 

 
Analytics 

 
 

(OLAP) 
 

“What is revenue each store 
this year?” 



Agenda 

What is “Big Data” (BD)? 
 
GFS, MapReduce, Hadoop, Spark 
 
What’s different between BD and DB? 
 
 
Assumption: you learned about parallel DB already. 







What is “Big Data”? 



Gartner’s Definition 

 
“Big data” is high-volume, -velocity and -variety 
information assets that demand cost-effective, 
innovative forms of information processing for 
enhanced insight and decision making. 
 



3 Vs of Big Data 

Volume: data size 
 
Velocity: rate of data coming in 
 
Variety (most important V): data sources, formats, 
workloads 



“Big Data” can also refer to the tech stack 

Many were pioneered by Google 



Why didn’t Google just use 
database systems? 



Challenges 

Data size growing (volume & velocity) 
–  Processing has to scale out over large clusters 

 
 
 

Complexity of analysis increasing (variety) 
–  Massive ETL (web crawling) 
–  Machine learning, graph processing 



Examples 

Google web index: 10+ PB 
 
Types of data: HTML pages, PDFs, images, videos, … 
 
 

Cost of 1 TB of disk: $50 
 
Time to read 1 TB from disk: 6 hours (50 MB/s) 
 



The Big Data Problem 

Semi-/Un-structured data doesn’t fit well with 
databases 
 
Single machine can no longer process or even store all 
the data! 
 
Only solution is to distribute general storage & 
processing over clusters. 





GFS Assumptions 

“Component failures are the norm rather than the 
exception” 
 
“Files are huge by traditional standards” 
 
“Most files are mutated by appending new data rather 
than overwriting existing data” 
 
- GFS paper 



File Splits 

17 

Large	
  File	
  
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001	
  
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001	
  
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001	
  
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001	
  
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001	
  
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001	
  
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001	
  
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001	
  

…	
  
	
  

6440MB	
  

Block	
  	
  
1	
  

Block	
  	
  
2	
  

Block	
  	
  
3	
  

Block	
  	
  
4	
  

Block	
  	
  
5	
  

Block	
  	
  
6	
  

Block	
  	
  
100	
  

Block	
  	
  
101	
  

64MB	
   64MB	
   64MB	
   64MB	
   64MB	
   64MB	
  

…	
  

64MB	
   40MB	
  

Block	
  	
  
1	
  

Block	
  	
  
2	
  

Let’s color-code them 

Block	
  	
  
3	
  

Block	
  	
  
4	
  

Block	
  	
  
5	
  

Block	
  	
  
6	
  

Block	
  	
  
100	
  

Block	
  	
  
101	
  

e.g., Block Size = 64MB 

    Files are composed of set of blocks 
•  Typically 64MB in size 
•  Each block is stored as a separate file in the 

local file system (e.g. NTFS) 



Default placement policy: 
–  First copy is written to the node creating the file (write affinity) 
–  Second copy is written to a data node within the same rack 
                          (to minimize cross-rack network traffic) 
–  Third copy is written to a data node in a different rack 
                          (to tolerate switch failures) 

Node	
  5	
  Node	
  4	
  Node	
  3	
  Node	
  2	
  Node	
  1	
  

Block Placement 

18 

Block	
  	
  
1	
  

Block	
  	
  
3	
  

Block	
  	
  
2	
  

Block	
  	
  
1	
  

Block	
  	
  
3	
  

Block	
  	
  
2	
  

Block	
  	
  
3	
  

Block	
  	
  
2	
  

Block	
  	
  
1	
  

e.g., Replication factor = 3 

Objec<ve
s:	
  load	
  ba

lancing,	
  f
ast	
  acces

s,	
  fault	
  to
lerance	
  



GFS Architecture 

19 

NameNode	
   BackupNode	
  

DataNode	
   DataNode	
   DataNode	
   DataNode	
   DataNode	
  

(heartbeat, balancing, replication, etc.) 

namespace backups 



  Failure types: 
q  Disk errors and failures 
q  DataNode failures 
q  Switch/Rack failures 
q  NameNode failures 
q  Datacenter failures 

Failures, Failures, Failures 

GFS paper: “Component failures are the norm rather 
than the exception.” 
 

20 

NameNode	
  

DataNode	
  



GFS Summary 

Store large, immutable (append-only) files 
 
Scalability 
 
Reliability 
 
Availability 



Google Datacenter 

How do we program this thing? 



Traditional Network Programming 

Message-passing between nodes (MPI, RPC, etc) 
 
Really hard to do at scale: 

–  How to split problem across nodes? 
•  Important to consider network and data locality 

–  How to deal with failures? 
•  If a typical server fails every 3 years, a 10,000-node cluster sees 10 

faults/day! 

–  Even without failures: stragglers (a node is slow) 

 
Almost nobody does this! 



Data-Parallel Models 

Restrict the programming interface so that the system 
can do more automatically 
 
“Here’s an operation, run it on all of the data” 

–  I don’t care where it runs (you schedule that) 
–  In fact, feel free to run it twice on different nodes 

 
 

Does this sound familiar? 





MapReduce 

First widely popular programming model for data-
intensive apps on clusters 
 
Published by Google in 2004 

–  Processes 20 PB of data / day 

 
Popularized by open-source Hadoop project 



MapReduce Programming Model 

Data type: key-value records 
 
Map function: 

(Kin, Vin) -> list(Kinter, Vinter) 
 
Reduce function: 

(Kinter, list(Vinter)) -> list(Kout, Vout) 
 



Hello World of Big Data: Word Count 

the	
  quick	
  
brown	
  fox	
  

the	
  fox	
  ate	
  
the	
  mouse	
  

how	
  now	
  
brown	
  
cow	
  

Map	
  

Map	
  

Map	
  

Reduce	
  

Reduce	
  

brown,	
  2	
  
fox,	
  2	
  
how,	
  1	
  
now,	
  1	
  
the,	
  3	
  

ate,	
  1	
  
cow,	
  1	
  

mouse,	
  1	
  
quick,	
  1	
  

the,	
  1	
  
brown,	
  1	
  
fox,	
  1	
  

quick,	
  1	
  

the,	
  1	
  
fox,	
  1	
  
the,	
  1	
  

how,	
  1	
  
now,	
  1	
  

brown,	
  1	
  
ate,	
  1	
  

mouse,	
  1	
  

cow,	
  1	
  

Input	
   Map	
   Shuffle	
  &	
  Sort	
   Reduce	
   Output	
  



MapReduce Execution 

Automatically split work into many small tasks 
 
Send map tasks to nodes based on data locality 
 
Load-balance dynamically as tasks finish 
 



MapReduce Fault Recovery 

If a task fails, re-run it and re-fetch its input 
–  Requirement: input is immutable 

 
If a node fails, re-run its map tasks on others 

–  Requirement: task result is deterministic & side effect is 
idempotent 

 
If a task is slow, launch 2nd copy on other node 

–  Requirement: same as above 

 



MapReduce Summary 

By providing a data-parallel model, MapReduce greatly 
simplified cluster computing: 

–  Automatic division of job into tasks 
–  Locality-aware scheduling 
–  Load balancing 
–  Recovery from failures & stragglers 

 
Also flexible enough to model a lot of workloads… 



Hadoop 

Open-sourced by Yahoo! 
–  modeled after the two Google papers 

 
Two components: 

–  Storage: Hadoop Distributed File System (HDFS) 
–  Compute: Hadoop MapReduce 

 
Sometimes synonymous with Big Data 





Why didn’t Google just use databases? 

Cost 
–  database vendors charge by $/TB or $/core 

 
Scale 

–  no database systems at the time had been demonstrated to work at that scale (# 
machines or data size) 

Data Model 
–  A lot of semi-/un-structured data: web pages, images, videos 

 
Compute Model 

–  SQL not expressive (or “simple”) enough for many Google tasks (e.g. crawl the web, 
build inverted index, log analysis on unstructured data) 

Not-invented-here 



MapReduce Programmability 

Most real applications require multiple MR steps 
–  Google indexing pipeline: 21 steps 
–  Analytics queries (e.g. count clicks & top K): 2 – 5 steps 
–  Iterative algorithms (e.g. PageRank): 10’s of steps 

 
Multi-step jobs create spaghetti code 

–  21 MR steps -> 21 mapper and reducer classes 
–  Lots of boilerplate code per step 



Higher Level Frameworks 

SELECT count(*) FROM users

A = load 'foo';
B = group A all;
C = foreach B generate COUNT(A);

In reality, 90+% of MR jobs are generated by Hive SQL 



SQL on Hadoop (Hive) 

Meta	
  
store	
  

HDFS	
  

	
  

	
  	
  Client	
  

Driver	
  

SQL	
  
Parser	
  

Query	
  
Op<mizer	
  

Physical	
  Plan	
  

Execu<on	
  

CLI	
   JDBC	
  

MapReduce	
  



Problems with MapReduce 

1.  Programmability 
–  We covered this earlier … 

 
2.  Performance 

–  Each MR job writes all output to disk 
–  Lack of more primitives such as data broadcast 

 



Spark 

Started in Berkeley AMPLab in 2010; addresses MR problems. 
 
Programmability: DSL in Scala / Java / Python 

–  Functional transformations on collections 
–  5 – 10X less code than MR 
–  Interactive use from Scala / Python REPL 
–  You can unit test Spark programs! 

 
Performance: 

–  General DAG of tasks (i.e. multi-stage MR) 
–  Richer primitives: in-memory cache, torrent broadcast, etc 
–  Can run 10 – 100X faster than MR 



Programmability 

#include "mapreduce/mapreduce.h" 
 
// User’s map function 
class SplitWords: public Mapper { 
  public: 
  virtual void Map(const MapInput& input) 
  { 
    const string& text = input.value(); 
    const int n = text.size(); 
    for (int i = 0; i < n; ) { 
      // Skip past leading whitespace 
      while (i < n && isspace(text[i])) 
        i++; 
      // Find word end 
      int start = i; 
      while (i < n && !isspace(text[i])) 
        i++; 
      if (start < i) 
        Emit(text.substr( 
            start,i-start),"1"); 
    } 
  } 
}; 
 
REGISTER_MAPPER(SplitWords); 
 
 
 
 

// User’s reduce function 
class Sum: public Reducer { 
  public: 
  virtual void Reduce(ReduceInput* input) 
  { 
    // Iterate over all entries with the 
    // same key and add the values 
    int64 value = 0; 
    while (!input->done()) { 
      value += StringToInt( 
                 input->value()); 
      input->NextValue(); 
    } 
    // Emit sum for input->key() 
    Emit(IntToString(value)); 
  } 
}; 
 
REGISTER_REDUCER(Sum); 
 
 
 
 
 
 
 
 
 
 

int main(int argc, char** argv) { 
  ParseCommandLineFlags(argc, argv); 
  MapReduceSpecification spec; 
  for (int i = 1; i < argc; i++) { 
    MapReduceInput* in= spec.add_input(); 
    in->set_format("text"); 
    in->set_filepattern(argv[i]); 
    in->set_mapper_class("SplitWords"); 
  } 
 
  // Specify the output files      
  MapReduceOutput* out = spec.output(); 
  out->set_filebase("/gfs/test/freq"); 
  out->set_num_tasks(100); 
  out->set_format("text"); 
  out->set_reducer_class("Sum"); 
 
  // Do partial sums within map 
  out->set_combiner_class("Sum"); 
 
  // Tuning parameters  
  spec.set_machines(2000); 
  spec.set_map_megabytes(100); 
  spec.set_reduce_megabytes(100); 
   
  // Now run it 
  MapReduceResult result; 
  if (!MapReduce(spec, &result)) abort(); 
  return 0; 
 } 

Full Google WordCount: 



Programmability 

Spark WordCount: 

val file = spark.textFile(“hdfs://...”)
val counts = file.flatMap(line => line.split(“ ”))  
                 .map(word => (word, 1))  
                 .reduceByKey(_ + _)  
 
counts.save(“out.txt”)



Performance 

0.96 
110 

0 25 50 75 100 125 

Logistic Regression 

4.1 
155 

0 30 60 90 120 150 180 

K-Means Clustering Hadoop MR 

Spark 

Time per Iteration (s)



43 

Performance 
Time to sort 100TB  

2100 machines 2013 Record:  
Hadoop 

2014 Record: 
Spark 

Source: Daytona GraySort benchmark, sortbenchmark.org  

72 minutes 

207 machines 

23 minutes 

Also sorted 1PB in 4 hours 





Spark Summary 

Spark generalizes MapReduce to provide: 
–  High performance 
–  Better programmability 
–  (consequently) a unified engine 

The most active open source data project 



Note： not a scientific comparison. 



Beyond Hadoop Users 

47 

Spark early adopters 

Data Engineers 
Data Scientists 
Statisticians 
R users 
PyData … 
 

Users 
 

Understands 
MapReduce 

& functional APIs 



48 



DataFrames in Spark 

Distributed collection of data grouped into named 
columns (i.e. RDD with schema) 
DSL designed for common tasks 

–  Metadata 
–  Sampling 
–  Project, filter, aggregation, join, … 
–  UDFs 

Available in Python, Scala, Java, and R (via SparkR) 

49 



Plan Optimization & Execution 

50 

DataFrames and SQL share the same optimization/execution pipeline 
 
Maximize code reuse & share optimization efforts 

SQL	
  AST	
  

DataFrame	
  

Unresolved	
  
Logical	
  Plan	
   Logical	
  Plan	
   Op<mized	
  

Logical	
  Plan	
  
Physical	
  Plans	
  Physical	
  Plans	
   RDDs	
  Selected	
  

Physical	
  Plan	
  

Analysis	
   Logical	
  
Op<miza<on	
  

Physical	
  
Planning	
  

Co
st
	
  M

od
el
	
  

Physical	
  Plans	
  

Code	
  
Genera<on	
  

Catalog	
  



Our Experience So Far 

SQL is wildly popular and important 
–  100% of Databricks customers use some SQL 

Schema is very useful 
–  Most data pipelines, even the ones that start with unstructured 

data, end up having some implicit structure 
–  Key-value too limited 
–  That said, semi-/un-structured support is paramount 

 
Separation of logical vs physical plan 

–  Important for performance optimizations (e.g. join selection) 



Return of SQL 





Why SQL? 

Almost everybody knows SQL 
 
Easier to write than MR (even Spark) for analytic queries 
 
Lingua franca for data analysis tools (business 
intelligence, etc) 
 
Schema is useful (key-value is limited) 



What’s really different? 

SQL on BD (Hadoop/Spark) vs SQL in DB? 
 
Two perspectives: 
 
1.  Flexibility in data and compute model 

2.  Fault-tolerance 
 



Traditional Database Systems 
(Monolithic) 

Physical Execution Engine (Dataflow) 

SQL 

Applications 

One way (SQL) in/out and data must be structured 



Data-Parallel Engine (Spark, MR) 

SQL DataFrame M.L. 

Big Data Ecosystems 
(Layered) 

Decoupled storage, low vs high level compute 
Structured, semi-structured, unstructured data 

Schema on read, schema on write 



Evolution of Database Systems 
Decouple Storage from Compute 

Physical Execution Engine (Dataflow) 

SQL 

Applications 

Physical Execution Engine (Dataflow) 

SQL 

Applications 

Traditional 2014 - 2015 

IBM Big Insight 
Oracle 

EMC Greenplum 
… 
 

support for nested data (e.g. JSON) 
 



Perspective 2: Fault Tolerance 

 
Database systems: coarse-grained fault tolerance 

–  If fault happens, fail the query (or rerun from the beginning) 

 
MapReduce: fine-grained fault tolerance 

–  Rerun failed tasks, not the entire query 



We were writing it to 48,000 hard drives (we did not use the full capacity of these 
disks, though), and every time we ran our sort, at least one of our disks managed 
to break (this is not surprising at all given the duration of the test, the number of 
disks involved, and the expected lifetime of hard disks).  



MapReduce 
Checkpointing-based Fault Tolerance 

Checkpoint all intermediate output 
–  Replicate them to multiple nodes 
–  Upon failure, recover from checkpoints 
–  High cost of fault-tolerance (disk and network I/O) 

 
Necessary for PBs of data on thousands of machines 
 

What if I have 20 nodes and my query takes only 1 min? 



Spark 
Unified Checkpointing and Rerun 

Simple idea: remember the lineage to create an RDD, 
and recompute from last checkpoint. 
 
When fault happens, query still continues. 
 
When faults are rare, no need to checkpoint, i.e. cost of 
fault-tolerance is low. 
 



What’s Really Different? 

Monolithic vs layered storage & compute 
–  DB becoming more layered 
–  Although “Big Data” still far more flexible than DB 

 
Fault-tolerance 

–  DB mostly coarse-grained fault-tolerance, assuming faults 
are rare 

–  Big Data mostly fine-grained fault-tolerance, with new 
strategies in Spark to mitigate faults at low cost 

 



Convergence 

DB evolving towards BD 
–  Decouple storage from compute 
–  Provide alternative programming models 
–  Semi-structured data (JSON, XML, etc) 

 
BD evolving towards DB 

–  Schema beyond key-value 
–  Separation of logical vs physical plan 
–  Query optimization 
–  More optimized storage formats 



Thanks & Questions? 

Reynold Xin 
 
rxin@databricks.com 
 
@rxin 



Acknowledgement 

Some slides taken from: 
 
Zaharia. Processing Big Data with Small Programs 
 
Franklin. SQL, NoSQL, NewSQL? CS186 2013 
 


