—

Big Data Analytics Systems:
What Goes Around Comes Around

Reynold Xin, CS186 guest lecture @ Berkeley
Apr9, 2015

databricks

Who am I?

Co-founder & architect @ Databricks

On-leave from PhD @ Berkeley AMPLab

Current world record holder in 100TB sorting (Daytona
GraySort Benchmark)

€databricks

Transaction
Processing

(OLTP)

“User Abought item b”

€databricks

Analytics

(OLAP)

“What is revenue each store
this year?”

Agenda
Whatis “Big Data” (BD)?
GFS, MapReduce, Hadoop, Spark

What’s different between BD and DB?

Assumption: you learned about parallel DB already.

€databricks

big data

Search term

+Add term

Interest over time - v/ News headlines Forecast 7

G
A
Mw—‘ T —— -
2005 2007 2009 2011 2013 2015
<H

€databricks

big data small data

Search term Search term

+Add term

Interest overtime - [[] News headlines Forecast 7

T e

Average 2005 2007 2009 2011 2013 2015

<D

€databricks

What is "Big Data™?

€databricks

Gartner’s Definition

“Big data” is high-volume, -velocity and -variety
information assets that demand cost-effective,
innovative forms of information processing for
enhanced insight and decision making.

€databricks

3 Vs of Big Data

Volume: data size

Velocity: rate of data coming in

Variety (most important V): data sources, formats,
workloads

€databricks

‘Big Data” can also refer to the tech stack

Many were pioneered by Google

€databricks

Why didn't Google just use
database systems?

€databricks

Challenges

The
Economist

i : . ‘M deluge
Data size growing (volume & velocity)

— Processing has to scale out over large clusters

Complexity of analysis increasing (variety)

— Massive ETL (web crawling)
— Machine learning, graph processing

MACHINE LEARNING
€databricks

Examples
Google web index: 10+ PB

Types of data: HTML pages, PDFs, images, videos, ...

Costof 1 TB of disk: S50

Time toread 1 TB from disk: 6 hours (50 MB/s)

€databricks

The Big Data Problem

Semi-/Un-structured data doesn’t fit well with
databases

Single machine can no longer process or even store all
the datal!

Only solution is to distribute general storage &
processing over clusters.

€databricks

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
Google*

ABSTRACT

We have designed and implemented the Google File Sys-
tem, a scalable distributed file system for large distributed
data-intensive applications. It provides fault tolerance while
running on inexpensive commodity hardware, and it delivers
high aggregate performance to a large number of clients.

While sharing many of the same goals as previous dis-
tributed file systems, our design has been driven by obser-
vations of our application workloads and technological envi-
ronment, both current and anticipated, that reflect a marked
departure from some earlier file system assumptions. This
has led us to reexamine traditional choices and explore rad-
ically different design points,

The file system has successfully met our storage needs.
It is widely deployed within Google as the storage platform
for the generation and processing of data used by our ser-
vice as well as research and development efforts that require
large data sets. The largest cluster to date provides hun-
dreds of terabytes of storage across thousands of disks on
over a thousand machines, and it is concurrently accessed
by hundreds of clients.

In this paper, we present file system interface extensions
designed to support distributed applications, discuss many
aspects of our design, and report measurements from both
micro-benchmarks and real world use.

1. INTRODUCTION

We have designed and implemented the Google File Sys-
tem (GFS) to meet the rapidly growing demands of Google’s
data processing needs. GFS shares many of the same goals
as previous distributed file systems such as performance,
scalability, reliability, and availability. However, its design
has been driven by key observations of our application work-
loads and technological environment, both current and an-
ticipated, that reflect a marked departure from some earlier
file system design assumptions. We have reexamined tradi-
tional choices and explored radically different points in the
design space.

First, component failures are the norm rather than the
exception. The file system consists of hundreds or even
thousands of storage machines built from inexpensive com-
modity parts and is accessed by a comparable number of
client machines. The quantity and quality of the compo-
nents virtually guarantee that some are not functional at
any given time and some will not recover from their cur-
rent failures. We have seen problems caused by application
bugs, operating system bugs, human errors, and the failures
of disks, memory, connectors, networking, and power sup-
plies. Therefore, constant monitoring, error detection, fault
tolerance, and automatic recovery must be integral to the
system.

Second, files are huge by traditional standards. Multi-GB

GE'S Assumptions

“Component failures are the norm rather than the
exception”

“Files are huge by traditional standards”

“Most files are mutated by appending new data rather
than overwriting existing data”

- GFS paper

€databricks

File Splits

Example:

Large File
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001
1100101010011100101010011100101010011100101010011100110010101001110010101001110010101001110010101001110010101001

6440MB

Let’s color-code them

Block Block Block Block Block
6 100 101

64MB 64MB 64MB 64MB 64MB 64MB 64MB 40MB

Files are composed of set of blocks
* Typically 64MB in size
* Each blockis stored as a separate file in the
local file system (e.g. NTFS)

e.g., Block Size = 64MB

17

€databricks

Block Placement

Example:
Node 1 Node 2 Node 3 Node 4 Node 5
e.g., Replication factor = 3 j
Default placement policy: o
— First copy is written to the node creatine="]‘ault toleraic.m'
~ Second copy is wriffent=""¢qst access, ame rack
oad palanciNds2=rack network traffic)

e |
W' en to a data node in a different rack

: (to tolerate switch failures)
€databricks 18

GFS Architecture

BackupNode '

.7/ '"\~. namespace backups
N

19

Failures, Failures, Failures

GFS paper: “Component failures are the norm rather
than the exception.”

Failure types:

a Disk errors and failures
a DataNode failures

a Switch/Rack failures
0 NameNode failures

" 4 Datacenter failures

€databricks

20

GES Summary

Store large, immutable (append-only) files
Scalability
Reliability

Availability

€databricks

Traditional Network Programming

Message-passing between nodes (MPI, RPC, etc)

Really hard to do at scale:

— How to split problem across nodes?
* Important to consider network and data locality

— How to deal with failures?

* If atypical server fails every 3 years, a 10,000-node cluster sees 10
faults/day!

— Even without failures: stragglers (a node is slow)

Almost nobody does this!

€databricks

Data-Parallel Models

Restrict the programming interface so that the system
can do more automatically

“Here’s an operation, run it on all of the data”
— | don’t care where it runs (you schedule that)
— In fact, feel free to run it twice on different nodes

Does this sound familiar?

€databricks

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @ google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-
1lv utilize the recources of a laree dictributed svetem

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to

raamnilife a cat nf intermediate Fav/sraliie natre and than

MapReduce

First widely popular programming model for data-
intensive apps on clusters

Published by Google in 2004
— Processes 20 PB of data / day

Popularized by open-source Hadoop project

€databricks

MapReduce Programming Model

Data type: key-value records

Map function:
(K, Vo) == list(K: o Vooior)

n» Yin interr Yinter

Reduce function:
(K. .o, list(V

Inter»

) > list(K_ ., V1)

Inter outr Y out

€databricks

Hello World of Big Data: Word Count

Input Map Shuffle & Sort Reduce Output
the, 1
: brown, 1
the quick brown, 2
brown fox fox, 2
how, 1
_________________ now, 1
the, 3
the fox ate
the mouse
_________________ . ate, 1
ate, 1 cow, 1
mouse, 1
how now mouse, 1
brown quick, 1
cow
e — — L

MapReduce Execution

Automatically split work into many small tasks

Send map tasks to nodes based on data locality

Load-balance dynamically as tasks finish

€databricks

MapReduce Fault Recovery

It a task fails, re-run it and re-fetch its input
— Requirement: inputis immutable

If a node fails, re-run its map tasks on others

— Requirement: task result is deterministic & side effect is
idempotent

It ataskis slow, launch 2nd copy on other node
— Reqguirement: same as above

€databricks

MapReduce Summary

By providing a data-parallel model, MapReduce greatly
simplified cluster computing:

— Automatic division of job into tasks
— Locality-aware scheduling

— Load balancing

— Recovery from failures & stragglers

Also flexible enough to model a lot of workloads. ..

€databricks

Hadoop

Open-sourced by Yahoo!
— modeled after the two Google papers

Two components:
— Storage: Hadoop Distributed File System (HDFS)
— Compute: Hadoop MapReduce

Sometimes synonymous with Big Data

€databricks

MapReduce: A major step backwards

By David DeWitt on January 17, 2008 4:20 PM | Permalink | Comments (44) | TrackBacks (1)
[Note: Although the system attributes this post to a single author, it was written by David J. DeWitt and Michael Stonebraker]

On January 8, a Database Column reader asked for our views on new distributed database research efforts, and we'll begin here v
to discuss it, since the recent trade press has been filled with news of the revolution of so-called "cloud computing." This paradig:
processors working in parallel to solve a computing problem. In effect, this suggests constructing a data center by lining up a larg
much smaller number of high-end servers.

For example, IBM and Google have announced plans to make a 1,000 processor cluster available to a few select universities to te
software tool called MapReduce [1]. Berkeley has gone so far as to plan on teaching their freshman how to program using the M:

As both educators and researchers, we are amazed at the hype that the MapReduce proponents have spread about how it represer.
data-intensive applications. MapReduce may be a good idea for writing certain types of general-purpose computations, but to the

1. A giant step backward in the programming paradigm for large-scale data intensive applications
2. A sub-optimal implementation, in that it uses brute force instead of indexing
3. Not novel at all -- it represents a specific implementation of well known techniques developed nearly 25 years ago

4. Missing most of the features that are routinely included in current DBMS

€databricks

Why didn't Google just use databases?

Cost
— database vendors charge by S/TB or S/core
Scale
— no database systems at the time had been demonstrated to work at that scale (#
machines or data size)
Data Model

— Alot of semi-/un-structured data: web pages, images, videos

Compute Model

— SQL not expressive (or “simple”) enough for many Google tasks (e.g. crawl the web,
build inverted index, log analysis on unstructured data%

Not-invented-here

€databricks

MapReduce Programmability

Most real applications require multiple MR steps
— Google indexing pipeline: 21 steps
— Analytics queries (e.g. count clicks & top K): 2 - 5 steps
— Iterative algorithms (e.g. PageRank): 10’s of steps

Multi-step jobs create spaghetti code
— 21 MR steps -> 21 mapper and reducer classes
— Lots of boilerplate code per step

€databricks

Higher Level Frameworks

SELECT count(*) FROM users

A = load 'foo';
YAHOO, C = ggg:gch CI; generate COUNT(A);

€databricks

SQL on Hadoop (Hive)

Client CLI IDBC

Driver

Meta | I - :
Physical Plan
—— sQL Query u

S -
Parser Optimizer A

!
¥

MapReduce

HDFS

@databricks

Problems with MapReduce

1. Programmability
— We covered this earlier ...

2. Performance
— Each MR job writes all output to disk
— Lack of more primitives such as data broadcast

€databricks

Spark

Started in Berkeley AMPLab in 2010; addresses MR problems.

Programmability: DSL in Scala / Java / Python
— Functional transformations on collections
— 5-10Xless code than MR
— Interactive use from Scala / Python REPL
— You can unit test Spark programs!

Performance:

— General DAG of tasks (i.e. multi-stage MR)
— Richer primitives: in-memory cache, torrent broadcast, etc

— Canrun 10 - 100X faster than MR

€databricks

Programmability

Full Google WordCount:

#include "mapreduce/mapreduce.h"

// User’s map function
class Splitwords: public Mapper {
public:
virtual void Map(const MapInput& input)
{
const string& text = input.value(Q;
const int n = text.size();
for (int i =0; 1 <n;) {
// Skip past leading whitespace
while (i < n && isspace(text[i]))
i+
// Find word end
int start = 1i;
while (i < n & !isspace(text[i]))
144
if (start < i)
Emit(text.substr(
start,i-start),"1");
}
}
1

REGISTER_MAPPER(SpTlitwords);

€databricks

// User’s reduce function
class Sum: public Reducer {
pubTic:
virtual void Reduce(ReduceInput* input)
{
// Iterate over all entries with the
// same key and add the values
int64 value = 0;
while (!input->done()) {
value += StringToInt(
input->value());
input->Nextvalue();
}
// Emit sum for input->key()
Emit(IntToString(value));
}
1

REGISTER_REDUCER(Sum) ;

int main(int argc, char** argv) {

ParseCommandLineFlags(argc, argv);

MapReduceSpecification spec;

for (int i = 1; i < argc; i++) {
MapReduceInput®* in= spec.add_input();
in->set_format("text");
in->set_filepattern(argv[il);
in->set_mapper_class("splitwords");

}

// specify the output files
MapReduceOutput®* out = spec.output();
out->set_filebase("/gfs/test/freq");
out->set_num_tasks (100);
out->set_format("text");
out->set_reducer_class("sum");

// Do partial sums within map
out->set_combiner_class("sum");

// Tuning parameters
spec.set_machines(2000);
spec.set_map_megabytes(100);
spec.set_reduce_megabytes(100);

// Now run it

MapReduceResult result;

if (!MapReduce(spec, &result)) abort(Q);
return O;

Programmability

Spark WordCount:

val file = spark.textFile(“hdfs://...”)

val counts = file.flatMap(line => line.split(* 7))
.map(word => (word, 1))
.reduceByKey(_ + _)

counts.save(“out.txt”)

€databricks

Performance

K Means Clustering mm ‘ # Hadoop MR
' W Spark

0 30 60 90 120 150 180

- : 110
Logistic Regression

0.96

0 25 50 75 100 125

Time per Iteration (s)

€databricks

Performance

Time to sort 100TB
2013 Record: 2100 machines 2555525222
Hadoop
2014 Record: 207 machines s
Spark ’
23 minutes -

Also sorted 1PB in 4 hours

‘databrickS" Source: Daytona GraySort benchmark, sortbenchmark.org

43

Spafl?Z

Ecosystem

Alpha / Pre-alpha

BlinkDB
Approximate
SQL

€databricks

Spark Summary

Spark generalizes MapReduce to provide:
— High performance
— Better programmability
— (consequently) a unified engine

The most active open source data project

€databricks

Compare searchterms ~

Apache Hadoop Apache Spark
Search term Search term +Add term
Interest over time - v News headlines Forecast

B

Average 2005 2007 2009 2011 2013

N
o
W

<hH

@databricks Note: not a scientific comparison.

Beyond Hadoop Users

Spark early adopters

CTERRERw

Users Data Engineers
Data Scientists
jl> Understands jl> Statisticians
MapReduce R users
& functional APIs PyData ..

€databricks 47

€databricks

pdata.map(lambda x: (x.dept, [x.age, 11)) \
.reduceByKey(lambda x, y: [x[0] + y[0]l, x[1] + y[1]]) \
.map(lambda x: [x[@0], x[11[@0] / x[1][11]) \
.collect()

data.groupBy("dept").avg("age")

48

DataFrames in Spark

Distributed collection of data grouped into named
columns (i.e. RDD with schema)

DSL designed for common tasks
— Metadata
— Sampling
— Project, filter, aggregation, join, ...
— UDFs
Available in Python, Scala, Java, and R (via SparkR)

€databricks

49

RDDs

° ° ° | °
Plan Optimization & Execution
: Logical Physical Code
Analysis Optimization Planning Generation
SQL AST g
Unresolved Logical Pl Optimized § Selected
Logical Plan oglcal Flan Logical Plan 'l Physical Plans 2 Physical Plan
(@]
DataFrame ©

Catalog

DataFrames and SQL share the same optimization/execution pipeline

Maximize code reuse & share optimization efforts

€databricks

50

Our Experience So Far

SQL is wildly popular and important
— 100% of Databricks customers use some SQL

Schema is very useful

— Most data pipelines, even the ones that start with unstructured
data, end up having some implicit structure

— Key-value too limited
— That said, semi-/un-structured support is paramount

Separation of logical vs physical plan
— Important for performance optimizations (e.g. join selection)

€databricks

Return of SQL

Apple Cloud Data Media Mobile Science & Energy Social & Web Podcasts
Gigaom Research. Get unlimited market intelligence from over 20
MUST READS

Apple’s take on the smartwatch: L All you need to know about HBO's ik Snapchat CEO meets with Saudi
Elegant evolution new HBO Now streaming service investor Prince Alwaleed bin Talal

SQL is what’s next for Hadoop: Here’s who's doing it

by Feb. 21, 2013 - 10:29 AM PDT

p Comments

Source: Shutterstock user hauhu.

When we first began putting together the schedule for

Structure: Data several months ago, we knew that running SQL queries on
Hadoop would be a big deal — we just didn’t know how big a deal it would
actually become. Fast-forward to today, a mere month away from the event
(March 20-21in New York), and the writing on the wall is a lot clearer. SQL

...... t famli bl and o fas Lladann bt Bha dln fandiion dhand il bada

€databricks

Dremel: Interactive Analysis of Web-Scale Datasets

ABSTR.

Dremel is ¢
sis of read-
trees and c«
tion queries
to thousanc
of users at
and implenr
MapReduce
age represe
few-thousar

1. INT

Large-scale
web compz
storage tha
data. Puttir
has grown
ten make ¢
ing, online |

Tenzing

A SQL Implementation On The MapReduce Framework

Bisway
Chattop:
biswape

Prathy!
Arago
prathyus

ABSTRACT

Tenzing is a query engi
for ad hoc analysis of
mostly complete SQL ir
sions) combined with sev
erogeneity, high perforn
data awareness, low lat
and structured data, an
rently used internally a
serves 10000+ queries
pressed data. In this p
and implementation of]
typical analytical querie

1. INTRODUCTI

The MapReduce [9] fre
both inside and outside
has quickly become the f

manlakhla Aicdwilednd Aad

€databricks

Processing a Trillion Cells per Mouse Click

Alexander Hall, Olaf Bachmann, Robert Blssow, Silviu Ganceanu, Marc Nunkesser
Google, Inc.

{alexhall, olafb, buessow, silviu, marcnunkesser}@google.com

ABSTRACT

Column-oriented database systems have been a real game
changer for the industry in recent years. Highly tuned and
performant systems have evolved that provide users with the
possibility of answering ad hoc queries over large datasets
in an interactive manner.

In this paper we present the column-oriented datastore
developed as one of the central components of PowerDrill.
It combines the advantages of columnar data layout with
other known techniques (such as using composite range par-
titions) and extensive algorithmic engineering on key data
structures. The main goal of the latter being to reduce the
main memory footprint and to increase the efficiency in pro-
cessing typical user queries. In this combination we achieve
large speed-ups. These enable a highly interactive Web UI
where it is common that a single mouse click leads to pro-
cessing a trillion values in the underlying dataset.

1. INTRODUCTION

In the last decade, large companies have been placing an
ever increasing importance on mining their in-house data-
bases; often recognizing them as one of their core assets.
With this and with dataset sizes growing at an enormous

relevant columns. Obviously, in denormalized datasets with
often several thousands of columns this can make a huge dif-
ference compared to the the row-wise storage used by most
database systems. Moreover, columnar formats compress
very well, thus leading to less I/O and main memory usage.

At Google multiple frameworks have been developed to
support data analysis at a very large scale. Best known and
most widely used are MapReduce [13] and Dremel [23]. Both
are highly distributed systems processing requests on thou-
sands of machines. The latter is a column-store providing
interactive query speeds for ad hoc SQL-like queries.

In this paper we present an alternative column-store de-
veloped at Google as part of the PowerDrill project. For
typical user queries originating from an interactive Web UI
(developed as part of the same project) it gives a perfor-
mance boost of 10-100x compared to traditional column-
stores which do full scans of the data.

Background

Before diving into the subject matter, we give a little back-
ground about the PowerDrill system and how it is used for
data analysis at Google. Its most visible part is an interac-
tive Web Ul making heavy use of AJAX with the help of the
Google Web Toolkit [16]. It enables data visualization and

Why SQL?
Almost everybody knows SQL

Easier to write than MR (even Spark) for analytic queries

Lingua franca for data analysis tools (business
intelligence, etc)

Schema is useful (key-value is limited)

€databricks

What's really different?
SQL on BD (Hadoop/Spark) vs SQL in DB?
Two perspectives:

1. Flexibility in data and compute model

2. Fault-tolerance

€databricks

Traditional Database Systems
(Monolithic)

Applications

SQL

Physical Execution Engine (Dataflow)

Storage Manager

One way (SQL) in/out and data must be structured

€databricks

€databricks

Big Data Ecosystems
(Layered)

Applications

Data-Parallel Engine (Spark, MR)

General Storage (HDFS, S3, etc)

Decoupled storage, low vs high level compute
Structured, semi-structured, unstructured data
Schema on read, schema on write

Evolution of Database Systems
Decouple Storage from Compute

Traditional 2014 -2015
Applications Applications
SQL SQL
Physical Execution Engine (Dataflow) Physical Execution Engine (Dataflow)
Storage Manager General Storage (HDFS)
IBM Big Insight
Oracle

EMC Greenplum

gdatabricks support for nested data (e.g. JSON)

Perspective 2: Fault Tolerance

Database systems: coarse-grained fault tolerance
— Iffault happens, fail the query (or rerun from the beginning)

MapReduce: fine-grained fault tolerance
— Rerun failed tasks, not the entire query

€databricks

Google Official Blog

Insights from Googlers into our products, technology, and the Google culture

Sorting 1PB with MapReduce

Posted: Friday, November 21, 2008 8+1) 53 wiweet 38| [y 73]

At Google we are fanatical about organizing the world's information. As a result, we spend a lot of time finding
better ways to sort information using MapReduce, a key component of our software infrastructure that allows us to
run multiple processes simultaneously. MapReduce is a perfect solution for many of the computations we run
daily We were writing it to 48,000 hard drives (we did not use the full capacity of these

rans disks, though), and every time we ran our sort, at least one of our disks managed

in oy 0 break (thisis not surprising at all given the duration of the test, the numberof
expe disksinvolved, and the expected lifetime of hard disks). ,
spirit. You can think of it as an Olympic event for computations. By pushing the boundaries of these types of
programs, we learn about the limitations of current technologies as well as the lessons useful in designing next

generation computing platforms. This, in turn, should help everyone have faster access to higher-quality
information.

MapReduce
Checkpointing-based Fault Tolerance

Checkpoint all intermediate output
— Replicate them to multiple nodes
— Upon failure, recover from checkpoints
— High cost of fault-tolerance (disk and network 1/0)

Necessary for PBs of data on thousands of machines

What if I have 20 nodes and my query takes only 1 min?

€databricks

Spark
Unified Checkpointing and Rerun

Simple idea: remember the lineage to create an RDD,
and recompute from last checkpoint.

When fault happens, query still continues.

When faults are rare, no need to checkpoint, i.e. cost of
fault-tolerance is low.

€databricks

What's Really Different?

Monolithic vs layered storage & compute
— DB becoming more layered
— Although “Big Data” still far more flexible than DB

Fault-tolerance

— DB mostly coarse-grained fault-tolerance, assuming faults
are rare

— Big Data mostly fine-grained fault-tolerance, with new
strategies in Spark to mitigate faults at low cost

€databricks

Convergence

DB evolving towards BD
— Decouple storage from compute
— Provide alternative programming models
— Semi-structured data (JSON, XML, etc)

BD evolving towards DB
— Schema beyond key-value
— Separation of logical vs physical plan
— Query optimization
— More optimized storage formats

€databricks

Thanks & Questions?

Reynold Xin

rxin@databricks.com

@rxin

€databricks

Acknowledgement

Some slides taken from:
/aharia. Processing Big Data with Small Programs

Franklin. SQL, NoSQL, NewSQL? CS186 2013

€databricks

