

Apache Spark
Started in UC Berkeley ~ 2010
Most popular and de facto standard framework in big data

One of the largest OSS projects written in Scala (but with user-facing
APIs in Scala, Java, Python, R, SQL)

Many companies introduced to Scala due to Spark
@databricks

whoami

Databricks co-founder & Chief Architect

- Designed most of the major things in “modern day” Spark
- #1 contributor to Spark by commits and net lines deleted

UC Berkeley PhD in databases (on leave since 2013)

€databricks

My Scala / PL background

Working with Scala day-to-day since 2010; previously mostly C, C++,
Java, Python, Tcl ...

Authored “Databricks Scala Style Guide”, i.e. Scala is a better Java.

No PL background, i.e. from a PL perspective, | think mostly based on
experience and use cases, not first principle.

€databricks

€databricks

.@adriaanm at #sfscala: "l never think about
variance—I| just write pluses and minuses
until it compiles.”

8:22 PM - 17 Feb 2015 from San Francisco, CA

3 Retweets 41likes ¢S QDB QB P2 O3 @

How do you compare this with X? Wasn’t this done in X in the 80s?

€databricks

Today's Talk

Some archaeology
- IMS, relational databases
- MapReduce
- data frames

Last 7 years of Spark evolution (along with what Scala has enabled)

€databricks

[BM IMS hierarchical database (1966)

QOO _é O rders

pa ré(\—A &As‘:ow’“ Lnsto mer
|
C Lh ‘ (l ook Book- %oo}a
[1
(‘ ,' ;

€databricks

Image from https://stratechery.com/2016/oracles-cloudy-future/

€datab

Information Retrieval

P. BAXENDALE, Editor

A Relational Model of Data for
Large Shared Data Banks

E. F. Copp
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
infernal representation). A prompting service which supplies
such information is not a satisfactory solution. Activities of users
at terminals and most application programs should remain
unaffected when the internal representation of data is changed
and even when some aspects of the external representation
are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.

Existing noninferential, formatted data systems provide users
with tree-structured files or slightly more general network
models of the data. In Section 1, inadequacies of these models
are discussed. A model based on n-ary relations, a normal
form for data base relations, and the concept of a universal

The relational view (or model) of data described in
Section 1 appears to be superior in several respects to the
graph or network model [3, 4] presently in vogue for non-
inferential systems. It provides a means of describing data
with its natural structure only—that is, without superim-
posing any additional structure for machine representation
purposes. Accordingly, it provides a basis for a high level
data language which will yield maximal independence be-
tween programs on the one hand and machine representa-
tion and organization of data on the other.

A further advantage of the relational view is that it
forms a sound basis for treating derivability, redundancy,
and consistency of relations—these are discussed in Section
2. The network model, on the other hand, has spawned a
number of confusions, not the least of which is mistaking
the derivation of connections for the derivation of rela-
tions (see remarks in Section 2 on the “connection trap”).

Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted
data systems, and also the relative merits (from a logical
standpoint) of competing representations of data within a
single system. Examples of this clearer perspective are
cited in various parts of this paper. Implementations of
systems to support the relational model are not discussed.

“Future users of large data banks must be protected from having to
know how the data is organized in the machine. ...

most application programs should remain unaffected when the
internal representation of data is changed and even when some
aspects of the external representation are changed.”

€databricks

Two important ideas in RDBMS

Physical Data Independence: The ability to change the physical data
layout without having to change the logical schema.

Declarative Query Language: Programmer specifies “what” rather than
((ho\/\/n.

€databricks

Why'?

Business applications outlive the environments they were created in:
- New requirements might surface
- Underlying hardware might change
- Require physical layout changes (indexing, different storage medium, etc)

Enabled tremendous amount of innovation:
- Indexes, compression, column stores, etc

€databricks

Relational Database Pros vs Cons

Declarative and data independent

SQL is the universal interface everybody knows

SQLisnot a “real” PL
- Difficult to compose & build complex applications
- Lack of testing frameworks, IDEs

Too opinionated and inflexible
- Require data modeling before putting any data in

€databricks

B1g Data, MapReduce,
Hadoop

The Big Data Problem

Semi-/Un-structured data doesn’t fit well with databases
Single machine can no longer process or even store all the datal!

Only solution is to distribute general storage & processing over
clusters.

€databricks

; o
[
7 ¥ | X, -‘.'\ \

»

le Datacenter

P

Data-Parallel Models

Restrict the programming interface so that the system can do more
automatically

“Here’s an operation, run it on all of the data”
- I don’t care where it runs (you schedule that)
- In fact, feel free to run it twice on different nodes
- Leverage key concepts in functional programming
- Similar to “declarative programming” in databases

€databricks

MapReduce: A major step backwards

By David DeWitt on January 17, 2008 4:20 PM | Permalink | Comments (44) | TrackBacks (1)
[Note: Although the system attributes this post to a single author, it was written by David J. DeWitt and Michael Stonebraker]

On January 8, a Database Column reader asked for our views on new distributed database research efforts, and we'll begin here v
to discuss it, since the recent trade press has been filled with news of the revolution of so-called "cloud computing." This paradig:
processors working in parallel to solve a computing problem. In effect, this suggests constructing a data center by lining up a larg
much smaller number of high-end servers.

For example, IBM and Google have announced plans to make a 1,000 processor cluster available to a few select universities to te
software tool called MapReduce [1]. Berkeley has gone so far as to plan on teaching their freshman how to program using the M:

As both educators and researchers, we are amazed at the hype that the MapReduce proponents have spread about how it represer
data-intensive applications. MapReduce may be a good idea for writing certain types of general-purpose computations, but to the

1. A giant step backward in the programming paradigm for large-scale data intensive applications
2. A sub-optimal implementation, in that it uses brute force instead of indexing
3. Not novel at all -- it represents a specific implementation of well known techniques developed nearly 25 years ago

4. Missing most of the features that are routinely included in current DBMS

€databricks

MapReduce Pros vs Cons

+ Massively parallel

+ Flexible programming model & schema-on-read

+ Type-safe programming language (great for large eng projects)
- Bad performance

- Extremely verbose

- Hard to compose, while most real apps require multiple MR steps
- 21 MR steps -> 21 mapper and reducer classes

€databricks

Data frames in R / Python
Developed by stats community & concise syntax for ad-hoc analysis

Procedural (not declarative)

> head(filter(df, df$waiting < 50)) # an example in R
eruptions waiting

H#1 1.750 47
H#2 1.750 47
H##3 1.867 48

€databricks

Traditional data frames

+ Built-on “real” programming languages
+ Easierto learn

- No parallelism & doesn’t work well on med/big data
- Lack sophisticated query optimization

« No compile-time type safety (great for data science, not so great for

data eng)
gdatabricks

“Are you going to talk
about Spark at alll’?”

Which one is better”

Databases, R, MapReduce?
Declarative, functional, procedural?

A slide from 2013 .

Spark

Fast and expressive cluster computing system
interoperable with Apache Hadoop

Improves efficiency through:
» In-memory computing primitives __ Up to 100x faster
» General computation graphs (2-10% on disk)

Improves usability through:
» Rich APIs in Scala, Java, Python

- =
» Interactive shell Often 5x less code

€databricks

Spark's initial focus: a better MapReduce

Language-integrated API (RDD): similar to Scala’s collection library
using functional programming; incredibly powerful and composable

Tines = spark.textFile(*hdfs://...”) // RDD[String]
points = lTines.map(line => parsePoint(line)) // RDD[Point]
points.filter(p => p.x > 100).count()

Better performance: through a more general DAG abstraction, faster
scheduling, and in-memory caching (i.e. “100X faster than Hadoop”)

€databricks

Programmability

€databricks

1
2
»
.
s
.
.

pebiie clons Wardtonst (

peblic static class ToheslserMapper
estends Mappereliject, Tesl, Tesd. Demeritebies(

privete Flasl stetie Sotwriteble one = smw Semmedtettodi):
privete Toxt wort « sew Tenti))

peblic -H-Q.)kt ey, Teat velee, Comtawt contest
1 Weews I0ateptien, Deteruptentatent ioe (
Strang! REE LelrringO by
WAL (117 hawmecrtonenai})
e L T
ot v itedencd, o))
1
)
)

P et Clans Tt besteteins
antends et

w N

L ewt,
Prinate DATeritable reselt = e Semwritented)

PALEC wald redwiedTest by, Tlerebiesdoner itebien valees,
Cortest comtent
) Wrews IDtaceptiee. Ieterrgtedlacent i (
ot wem o 8y
for (Damwritadle sl o walees) (
»on oe val.getl);
)
resalt. et (sem);
Cantent wrilelhey, resslt)y
)
)

-m Stathe veld sadacitringl] s .-— Cocopt iom (
ot - - £
M'Hll « 00980 getRemainingdrgs ()
A9 Cotharhrgs. |.-.qo - n «
P o pr M IR TRape | wnrtiaent wime Teime] sty
Syvtes aitiing
)
Job J0h = sew Jeblcant, “ward cowett)
)o SR Lara (e almunt < Lana)y
aat SO

™ oot Yo
00 e AR T Lan s (S0t humiadces (Lass),
Job. vetutontheyClans (Tawt . < Lana) s
100 Sa T o TV L Lans (Dather i table < Lans),
hv(ln l-h 4w atharhrgs, length « Iy sl
N wiinn

)
FaledutputFormet . setdutpnthetnd Job,

sow Path(otherdrga lotherhrgs . longts ~ 1100:
VTR an LT (160, waiTFerCang ot iondtrue) ¥ 8 o 1))

val f = sc.textFile(inputPath)
val w = f, flatMap(l => L.split(" ")).map(word => (word, 1)).cache()
w.reduceByKey(_ + _).saveAsText(outputPath)

WordCount in 3 lines of Spark

WordCount in 50+ lines of Java MR

Why Scala (circa 2010)?

JVM-based, integrates well with existing Hadoop stack

Concise syntax

Interactive REPL

€databricks

Challenge 1. Lack of Structure

Most data is structured (JSON, CSV, Parquet, Avro, .. .)

* Defining case classes for every step is too verbose
« Programming RDDs inevitably ends up with a lot of tuples (_1, _2,...)

Functional transformations not as intuitive to data scientists
« E.g. map, reduce

€databricks

data
.map(x => (x.dept, (x.age, 1)))
.reduceByKey((vl, v2) => ((vl._1 + v2._.1), (v1._2 + v2._2)))

.map { case(k, v) => (k, v._1.toDouble / v._2) }
.collect()

data.groupby(“dept”).avg()

€databricks

Challenge 2. Performance

Closures are black boxes to Spark, and can’t be optimized

On data-heavy computation, small overheads add up

* [terators
« Null checks
« Physical immutability, object allocations

Python/R (the data science languages) 10X slower than Scala

€databricks

Demo

DataFrame API .

0 1 2 3 4 5 6
Runtime to count 1 billion elements (secs)

€databricks

Solution:

Structured APIs
DataFrames + Spark SQL

€databricks

DataFrames and Spark SQL

Efficient library for structured data (data with a known schema)
« Two interfaces: SQL for analysts + apps, DataFrames for programmers

Optimized computation and storage, similar to RDBMS

SIGMOD 2015

Spark SQL: Relational Data Processing in Spark

Michael Armbrustf, Reynold S. Xinf, Cheng Liant, Yin Huait, Davies Liut, Joseph K. Bradley',
Xiangrui Meng', Tomer Kaftan:, Michael J. Franklint*, Ali Ghodsit, Matei Zaharia™

tDatabricks Inc. *MIT CSAIL fAMPLab, UC Berkeley

. " ABSTRACT ‘While the popularity of relational systems shows that users often

‘ databr]-Cks Spark SQL is a new module in Apache Spark that integrates rela- p.refer writing de(‘:larative que‘ries_, the re! ational approach s insuffi-
tional processing with Spark’s functional programming APL Buile ~ ient for many big data applications. First, users want to perform

e e Ol Cral OO late Coacdl s comngan ETL to and from various data sources that might be semi- or un-

Execution Steps

Logical

Optimizer Physical Code RDD
S
Slan I Plan | Generator
Data [Catalog] o e HERSE
Source < @
APl elasticsearch pL ;

€databricks

DatakFrame API

DataFrames hold rows with a known schema and offer relational
operations on them through a DSL

val users = spark.sql(“select * from users”)

val massuUsers = users('country === “Canada”)
\ J

¥
massusers.count() Expression AST

massusers.groupBy(“name”).avg(“age”)

€databricks

Spark RDD Execution

Java/Scala
frontend

\ 4

JVM
backend

€databricks

opaque closures
(user-defined functions)

Python
frontend

\ 4

Python
backend

Spark DataFrame Execution

Python Java/Scala R
DF DF DF

N/

Logical Plan Intermediate representation for computation

Simple wrappers to create logical plan

Catalyst
optimizer

Physical
execution

€databricks

Structured API Example

events =
sc.read.json(“/Togs™) SCAN logs SCAN users while(logs.hasNext) {

e = logs.next

stats = if(e.status == “ERR”) {

events.join(users) HILTER E = usirsiget(e.uid) ,
.groupBy(“loc”, “status”) ey = (u.loc, e.status
.gvg(Beration”) JOIN sum(key) += e.duration

count(key) += 1
errors = stats.where(INele }
stats.status == “ERR”) }
DataFrame AP Optimized Plan Generated Code”
@databricks

*Thomas Neumann. Efficiently Compiling Efficient Query Plans for Modern Hardware. VLDB 2011.

What has Scala enabled”

Spark becomes effectively a compiler.

Pattern matching, case classes, tree manipulation invaluable.

Much more difficult to express the compiler partin Java.

€databricks

Type-safety strikes back

DataFrames are runtime type checked; harder to ensure correctness
for large data engineering pipelines.

Lack the ability to reuse existing classes and functions.

€databricks

RDDs

Datasets

val lines = sc.textFile("/wikipedia")
val words = lines

.flatMap(_.split(" "))

filter(_ '="")
Datasets
val lines = sqlContext.read.text("/wikipedia").as[String]

val words = lines
.flatMap(_.split(" "))

filter(= "")

€databricks

Dataset API

Runs on the same optimizer and execution engine as DataFrames

“Encoder” (context bounds) describes the structure of user-defined
classes to Spark, and code-gens serializer.

@Experimental
@InterfaceStability.Evolving
map[U : Encoder](func: => U): Dataset[U] = withTypedPlan {

$ databricks ® | MapE1ements[J1(func)
}

What are Spark's structured APIs?

Multi-faceted APIs for different big data use cases:
- SQL: “lingua franca” of data analysis
- R/ Python: data science
- Scala Dataset API: type safety for data engineering

Internals that achieve this:
- declarativity & data independence from databases - easy to optimize
- flexibility & parallelism from MapReduce — massively scalable & flexible

€databricks

Future possibilities from decoupled frontend/backend

Spark as a fast, multi-core data collection library
- Spark running on my laptop is already much faster than Pandas

Spark as a performant streaming engine
Spark as a GPU/vectorized engine

All using the same AP
@databricks

No language is pertect, but things
[wished were designed ditferently in Scala

(I realize most of thern have trade-offs that are difficult to make)

Binary Compatibility

Scala’s own binary compatibility (2.9->2.10->2.11->2.12 ...

- Huge maintenance cost for Paa$ provider (Databricks)

Case classes

- Incredibly powerful for internal use, but virtually impossible to guarantee
forward compatibility (i.e. add a field)

Traits with default implementations

€databricks

Java APls

Spark defines one APl usable for both Scala and Java
- Everything needs to be defined twice (APIs, tests)
- Have to use weird return types, e.g. array
- Docs don’t work for Java

- Kotlin’s idea to reuse Java collection library can simplify this (although it
might come with other hassles)

€databricks

Exception Handling
Often use lots of Java libraries, especially for disk 1/O, network

No good way to ensure exceptions are handled correctly:

- Create Scala shims for all libraries to turn return types into Try’s
- Write low level I/O code in Java and rely on checked exceptions

€databricks

Tooling so project can be more opinionated

Need to restrict and enforce consistency

- Otherwise impossible to train 1000+ OSS contributors (or even 100+
employees) on all language features properly

Lack of great tooling to enforce standards or disable features

€databricks

Recap

Latest Spark take the best ideas out of earlier systems
- data frame from R as the “interface” — easy to learn

- declarativity & data independence from databases -- easy to optimize &
future-proof

- parallelism from functional programming -- massively scalable & flexible

Scala’s a critical part of all of these!

€databricks

Thank you & we are hiring!

@rxin

databricks

