
Interfaces3

Reynold Xin
Aug 22, 2014 @ Databricks Retreat

Repurposed Jan 27, 2015 for Spark community

Spark’s two improvements
over Hadoop MR

• Performance: “100X” faster than Hadoop MR

• Programming model: easier to use

public static class WordCountMapClass extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(LongWritable key, Text value,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {
 String line = value.toString();
 StringTokenizer itr = new StringTokenizer(line);
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 output.collect(word, one);
 }
 }
}

public static class WorkdCountReduce extends MapReduceBase
 implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterator<IntWritable> values,
 OutputCollector<Text, IntWritable> output,
 Reporter reporter) throws IOException {
 int sum = 0;
 while (values.hasNext()) {
 sum += values.next().get();
 }
 output.collect(key, new IntWritable(sum));
 }
}

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
val spark = new SparkContext(master, appName, [sparkHome], [jars])
val file = spark.textFile("hdfs://...")
val counts = file.flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey(_ + _)
counts.saveAsTextFile("hdfs://...")

Hadoop MR Spark

“It has been the easiest
learning experience that

I went through”

- Burak coerced by Reynold

• Undergrad CS education cares more about
implementation of functionality

• PhD research cares more about prototyping and
validating ideas

• Neither requires thinking hard about interface
design

– Damian Conway on “Ten Essential Development Practices"

“The most important aspect of any module is not
how it implements the facilities it provides, but

the way in which it provides those facilities in the
first place.”

Example of Interfaces
• public programming APIs (e.g. RDD)

• external modules we expose (matplotlib)

• default imports in notebooks

• internal module methods (e.g. tree store)

• command line arguments

• configuration options

Why is interface design
important?

• If you write code, you are already doing design

• Interfaces can be our biggest asset

• or biggest liabilities!

Public Interfaces as Assets
• Great public interfaces capture emotions and in

turn capture customers

• Customers invest heavily in (public) interfaces

• Cost of switching interfaces is HIGH: rewriting &
retraining

• Network effect: each “customer” brings value to
another by writing apps and talking about it

Internal Interfaces as Assets

• Great internal interfaces capture emotions and in
turn capture developers

• Developers reinforce our leadership

• Well designed internal interfaces enable us to
move faster

• e.g. compression codec vs connection manager

Interfaces as Liabilities

• Bad public interfaces increase support burden

• groupByKey anyone?

• Bad internal interfaces increase cost of
maintenance and innovation

Good Interfaces

• Easy to learn & use

• Sufficiently powerful

• Anticipating an inability to know future needs

• Backward compatible

–Andy Konwinski

“Other than hiring Reza and buying him drinks,
how do I get better at it?”

Process
1. Identify modules: separation of concerns

2. For each module: don’t sweat implementation
details but take time to identify interfaces,
minimize them, and think how they evolve

3. Design, prototype & program using the interfaces

4. Write out a short design doc and ask for feedback

5. Implement the interface, and re-iterate

Guidelines

Keep it simple, stupid (KISS)
• Easier to learn / use

• Easier to document

• Easier to implement (less bugs)

• Easier to optimize narrow interfaces

• Easier to throw out / re-implement

• Easier to support long term

Ways to Simplify Design

Ways to Simply Design
Remove: Get rid of anything that isn’t essential to the application. This could mean content,
too; like the language you use in the navigation labels.

Organize: Arrange the elements of the interface so that they fit into logical chunks. This might
mean based on a person’s mental model (how they think), or tie in to a more familiar interface
pattern.

Hide: Place the most important elements within reach (make them obvious), and hide the
others, making them accessible through navigation.

Displace: Pushing some of the functionality to another device, or feature, so that the one
interface isn’t responsible for displaying every possible interaction.

Name Matters

• Class, variable, method names should be self-
explanatory

• Avoid cryptic names (e.g. operator overloading)

• Be consistent

Bad Examples in Spark
ExecutorLauncher

ExecutorRunner

DriverRunner

DriverWrapper

Client

Client (another one)

Client Base

AppClient

ExecutorLauncher yarn-client

ExecutorRunner standalone

DriverRunner standalone

DriverWrapper standalone

Client standalone

Client (another one) yarn

Client Base yarn

AppClient standalone

Bad Examples in Spark

Documentation Matters

Documentation Matters

+ Explicit typing for public interfaces also part of the doc

Minimize Accessibility
• Make classes and members as private as possible,

even for internal modules

• This maximizes information hiding

• Enables modules to be used, understood, built,
tested, and debugged independently

• A bad habit of many Scala developers to leave
everything wide open

Principle of least
astonishment

• Use your common sense; interfaces should not
surprise users

• e.g. Tachyon format command accidentally deletes
file

Composability
• LogisticRegressionWithSGD

• LogisticRegressionWithADMM

• LogisticRegressionWithLBFGS

• LogisticRegressionWithNewton

• LinearRegressionWithSGD

• …

Composability

• LogisticRegression.fit(data, method=“admm”)

Long-term Maintainability
• When in doubt, leave it out

• Every interface added increases complexity

• Easier to add than remove in the future

• Avoid exposing dependency on 3rd party libraries

• e.g. MLlib’s use of Breeze (+)

• e.g. Spark’s use of Guava Optional (-)

• Don’t let implementation details impact interface design

• KISS

• Remove, hide, organize, displace

• Name matters

• Documentations matter

• Minimize accessibility

• Compose interfaces for expressivity

• Long-term maintainability

• …

Interface Design

• Years of effort; impossible to do overnight

• Critical in building out a strong platform

• Critical in ensuring the long-term pace of innovation

• We scored better than anybody else out there, but
still a long way to go

References
• Eric S. Raymond, Basics of the Unix Philosophy

http://www.faqs.org/docs/artu/ch01s06.html

• Joshua Bloch, How to Design a Good API and Why
it Matters http://lcsd05.cs.tamu.edu/slides/
keynote.pdf

• Richard Gabriel, The Rise of ``Worse is Better’’
http://www.jwz.org/doc/worse-is-better.html (I don’t
actually agree with the article)

http://www.faqs.org/docs/artu/ch01s06.html
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://www.jwz.org/doc/worse-is-better.html

